Internal
problem
ID
[3721]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.3,
The
Method
of
Undetermined
Coefficients.
page
525
Problem
number
:
Problem
30
Date
solved
:
Sunday, March 30, 2025 at 02:06:30 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x)-5*diff(y(x),x)-6*y(x) = 4*x^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]+2*D[y[x],{x,2}]-5*D[y[x],x]-6*y[x]==4*x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**2 - 6*y(x) - 5*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)