Internal
problem
ID
[2253]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
10
Linear
system
of
Differential
equations.
Section
10.4,
constant
coefficient
homogeneous
system.
Page
540
Problem
number
:
section
10.4,
problem
15
Date
solved
:
Saturday, March 29, 2025 at 11:51:56 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(t),t) = 3*y__1(t)+y__2(t)-y__3(t), diff(y__2(t),t) = 3*y__1(t)+5*y__2(t)+y__3(t), diff(y__3(t),t) = -6*y__1(t)+2*y__2(t)+4*y__3(t)]; dsolve(ode);
ode={D[ y1[t],t]==3*y1[t]+1*y2[t]-1*y3[t],D[ y2[t],t]==3*y1[t]+5*y2[t]+1*y3[t],D[ y1[t],t]==-6*y1[t]+2*y2[t]+4*y3[t]}; ic={}; DSolve[{ode,ic},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y__1 = Function("y__1") y__2 = Function("y__2") y__3 = Function("y__3") ode=[Eq(-3*y__1(t) - y__2(t) + y__3(t) + Derivative(y__1(t), t),0),Eq(-3*y__1(t) - 5*y__2(t) - y__3(t) + Derivative(y__2(t), t),0),Eq(6*y__1(t) - 2*y__2(t) - 4*y__3(t) + Derivative(y__3(t), t),0)] ics = {} dsolve(ode,func=[y__1(t),y__2(t),y__3(t)],ics=ics)