11.1.7 problem 16

Internal problem ID [1468]
Book : Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade
Section : Chapter 4.1, Higher order linear differential equations. General theory. page 173
Problem number : 16
Date solved : Saturday, March 29, 2025 at 10:55:56 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 138
ode:=diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x)-diff(y(x),x)-3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{\frac {x \left (28+\left (188+12 \sqrt {93}\right )^{{2}/{3}}\right )}{4 \left (188+12 \sqrt {93}\right )^{{1}/{3}}}}-c_2 \sin \left (\frac {\sqrt {3}\, \left (\left (188+12 \sqrt {3}\, \sqrt {31}\right )^{{2}/{3}}-28\right ) x}{12 \left (188+12 \sqrt {3}\, \sqrt {31}\right )^{{1}/{3}}}\right )+c_3 \cos \left (\frac {\sqrt {3}\, \left (\left (188+12 \sqrt {3}\, \sqrt {31}\right )^{{2}/{3}}-28\right ) x}{12 \left (188+12 \sqrt {3}\, \sqrt {31}\right )^{{1}/{3}}}\right )\right ) {\mathrm e}^{-\frac {\left (28+\left (188+12 \sqrt {93}\right )^{{2}/{3}}+8 \left (188+12 \sqrt {93}\right )^{{1}/{3}}\right ) x}{12 \left (188+12 \sqrt {93}\right )^{{1}/{3}}}} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 87
ode=D[y[x],{x,3}]+2*D[y[x],{x,2}]-D[y[x],x]-3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 \exp \left (x \text {Root}\left [\text {$\#$1}^3+2 \text {$\#$1}^2-\text {$\#$1}-3\&,2\right ]\right )+c_3 \exp \left (x \text {Root}\left [\text {$\#$1}^3+2 \text {$\#$1}^2-\text {$\#$1}-3\&,3\right ]\right )+c_1 \exp \left (x \text {Root}\left [\text {$\#$1}^3+2 \text {$\#$1}^2-\text {$\#$1}-3\&,1\right ]\right ) \]
Sympy. Time used: 0.541 (sec). Leaf size: 226
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*y(x) - Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \frac {x \left (\frac {14 \sqrt [3]{2}}{\sqrt [3]{3 \sqrt {93} + 47}} + 2^{\frac {2}{3}} \sqrt [3]{3 \sqrt {93} + 47} + 8\right )}{12}} \sin {\left (\frac {\sqrt [3]{2} \sqrt {3} x \left (- \sqrt [3]{2} \sqrt [3]{3 \sqrt {93} + 47} + \frac {14}{\sqrt [3]{3 \sqrt {93} + 47}}\right )}{12} \right )} + C_{2} e^{- \frac {x \left (\frac {14 \sqrt [3]{2}}{\sqrt [3]{3 \sqrt {93} + 47}} + 2^{\frac {2}{3}} \sqrt [3]{3 \sqrt {93} + 47} + 8\right )}{12}} \cos {\left (\frac {\sqrt [3]{2} \sqrt {3} x \left (- \sqrt [3]{2} \sqrt [3]{3 \sqrt {93} + 47} + \frac {14}{\sqrt [3]{3 \sqrt {93} + 47}}\right )}{12} \right )} + C_{3} e^{\frac {x \left (-4 + \frac {14 \sqrt [3]{2}}{\sqrt [3]{3 \sqrt {93} + 47}} + 2^{\frac {2}{3}} \sqrt [3]{3 \sqrt {93} + 47}\right )}{6}} \]