78.12.15 problem 1 (o)

Internal problem ID [18231]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 17. The Homogeneous Equation with Constant Coefficients. Problems at page 125
Problem number : 1 (o)
Date solved : Monday, March 31, 2025 at 05:23:20 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=2*diff(diff(y(x),x),x)+diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-x}+c_2 \,{\mathrm e}^{\frac {x}{2}} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 24
ode=2*D[y[x],{x,2}] +D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} \left (c_1 e^{3 x/2}+c_2\right ) \]
Sympy. Time used: 0.129 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{\frac {x}{2}} \]