60.3.258 problem 1274

Internal problem ID [11254]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1274
Date solved : Sunday, March 30, 2025 at 08:04:04 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-v^{2}+x \right ) y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=4*x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+(-v^2+x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {BesselJ}\left (v , \sqrt {x}\right )+c_2 \operatorname {BesselY}\left (v , \sqrt {x}\right ) \]
Mathematica. Time used: 0.063 (sec). Leaf size: 38
ode=(-v^2 + x)*y[x] + 4*x*D[y[x],x] + 4*x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \operatorname {Gamma}(1-v) \operatorname {BesselJ}\left (-v,\sqrt {x}\right )+c_2 \operatorname {Gamma}(v+1) \operatorname {BesselJ}\left (v,\sqrt {x}\right ) \]
Sympy. Time used: 0.216 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
v = symbols("v") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) + (-v**2 + x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} J_{\sqrt {v^{2}}}\left (\sqrt {x}\right ) + C_{2} Y_{\sqrt {v^{2}}}\left (\sqrt {x}\right ) \]