Internal
problem
ID
[10004]
Book
:
Collection
of
Kovacic
problems
Section
:
section
3.
Problems
from
Kovacic
related
papers
Problem
number
:
Kovacic
1985
paper.
page
14.
section
3.2,
example
2
Date
solved
:
Sunday, March 30, 2025 at 02:51:24 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = (6/x^2-1)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]== ( (4*(5/2)^2-1)/(4*x^2)-1)*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(-1 + 6/x**2)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)