Internal
problem
ID
[21055]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
6,
Linear
systems.
Problems
section
6.9
Problem
number
:
7.d
Date
solved
:
Thursday, October 02, 2025 at 07:01:49 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 4*x(t)-13*y(t), diff(y(t),t) = 2*x(t)-6*y(t)]; ic:=[x(0) = 2, y(0) = 0]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==4*x[t]-13*y[t],D[y[t],t]==2*x[t]-6*y[t]}; ic={x[0]==2,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-4*x(t) + 13*y(t) + Derivative(x(t), t),0),Eq(-2*x(t) + 6*y(t) + Derivative(y(t), t),0)] ics = {x(0): 2, y(0): 0} dsolve(ode,func=[x(t),y(t)],ics=ics)