Internal
problem
ID
[20934]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
1,
First
order
ODEs.
Problems
section
1.5
Problem
number
:
1.h
Date
solved
:
Thursday, October 02, 2025 at 06:49:32 PM
CAS
classification
:
[[_linear, `class A`]]
ode:=diff(x(t),t)-2*x(t) = t*exp(2*t); dsolve(ode,x(t), singsol=all);
ode=D[x[t],t]-2*x[t]==t*Exp[2*t]; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-t*exp(2*t) - 2*x(t) + Derivative(x(t), t),0) ics = {} dsolve(ode,func=x(t),ics=ics)