3.2.2 Problems 101 to 200

Table 3.141: Second order linear ODE

#

ODE

Mathematica

Maple

257

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}-1 \]

258

\[ {}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right ) \]

259

\[ {}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right ) \]

260

\[ {}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \]

261

\[ {}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right ) \]

262

\[ {}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right ) \]

263

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right ) \]

264

\[ {}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right ) \]

265

\[ {}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right ) \]

266

\[ {}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \]

267

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (3 t \right ) \]

268

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]

269

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]

270

\[ {}x^{\prime \prime }+2 x^{\prime }+26 x = 600 \cos \left (10 t \right ) \]

271

\[ {}x^{\prime \prime }+8 x^{\prime }+25 x = 200 \cos \left (t \right )+520 \sin \left (t \right ) \]

278

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

279

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

280

\[ {}x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \]

281

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (2+x \right ) y^{\prime }+y = 0 \]

282

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

283

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

284

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

599

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

600

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

601

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

602

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

603

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

604

\[ {}4 y^{\prime \prime }-9 y = 0 \]

605

\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

606

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

607

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

608

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

609

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]

610

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

611

\[ {}y^{\prime \prime }+5 y^{\prime }+3 y = 0 \]

612

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]

613

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

614

\[ {}4 y^{\prime \prime }-y = 0 \]

615

\[ {}y^{\prime \prime }-y = 0 \]

616

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

617

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

618

\[ {}4 y^{\prime \prime }-y = 0 \]

619

\[ {}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0 \]

620

\[ {}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0 \]

621

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

622

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

623

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

624

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

625

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

626

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

627

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

628

\[ {}4 y^{\prime \prime }+9 y = 0 \]

629

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

630

\[ {}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0 \]

631

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

632

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

633

\[ {}y^{\prime \prime }+4 y = 0 \]

634

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

635

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

636

\[ {}y^{\prime \prime }+y = 0 \]

637

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

638

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

639

\[ {}u^{\prime \prime }-u^{\prime }+2 u = 0 \]

640

\[ {}5 u^{\prime \prime }+2 u^{\prime }+7 u = 0 \]

641

\[ {}y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]

642

\[ {}y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y = 0 \]

643

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

644

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y = 0 \]

645

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4} = 0 \]

646

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 0 \]

647

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

648

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+5 y = 0 \]

649

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0 \]

650

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+10 y = 0 \]

651

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{-t^{2}} y = 0 \]

652

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

653

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

654

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

655

\[ {}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

656

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

657

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 0 \]

658

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

659

\[ {}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0 \]

660

\[ {}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0 \]

661

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

662

\[ {}2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

663

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

664

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

665

\[ {}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0 \]

666

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

667

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

668

\[ {}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0 \]

669

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

670

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

671

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

672

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

673

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

674

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

675

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

676

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]