# |
ODE |
Mathematica |
Maple |
\[ {}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y = 2 x y^{\prime }+\ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = 2 x y^{\prime }+\sin \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 \,{\mathrm e}^{x} y = 1-{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2} x^{2}+x y+1 \] |
✓ |
✓ |
|
\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{2}-4 y y^{\prime }-4 x = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-4 y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{2}-y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {2}{3}}+a \] |
✗ |
✓ |
|
\[ {}\left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (x y^{\prime }-2 y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y \left (y-2 x y^{\prime }\right )^{2} = 2 y^{\prime } \] |
✓ |
✓ |
|
\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \] |
✗ |
✓ |
|
\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \] |
✓ |
✓ |
|
\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+x \] |
✓ |
✓ |
|
\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}+y^{2} = 1 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \] |
✓ |
✓ |
|
\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \] |
✓ |
✓ |
|
\[ {}x \sin \left (x \right ) y^{\prime }+\left (-x \cos \left (x \right )+\sin \left (x \right )\right ) y = \cos \left (x \right ) \sin \left (x \right )-x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = y^{n} \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2}+x y^{\prime } = 3 x +y^{\prime } \] |
✓ |
✓ |
|
\[ {}x y y^{\prime }-y^{2} = x^{4} \] |
✓ |
✓ |
|
\[ {}\frac {1}{y^{2}-x y+x^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \] |
✓ |
✓ |
|
\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \] |
✓ |
✓ |
|
\[ {}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime } x -y^{3} = \frac {x^{4}}{3} \] |
✓ |
✓ |
|
\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{2}+y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (-1+x \right ) \left (y^{2}-y+1\right ) = \left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right ) y+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-1 = {\mathrm e}^{2 y+x} \] |
✓ |
✓ |
|
\[ {}2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{n} y^{\prime } = 2 x y^{\prime }-y \] |
✓ |
✓ |
|
\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \] |
✓ |
✓ |
|
\[ {}x -y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \] |
✓ |
✓ |
|
\[ {}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \] |
✓ |
✓ |
|
\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x {y^{\prime }}^{2}-y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{4} = 1 \] |
✓ |
✓ |
|
\[ {}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime }+3 x = {\mathrm e}^{-2 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \] |
✓ |
✓ |
|
\[ {}x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{\prime }+6 x = t \,{\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime }+x = 2 \sin \left (t \right ) \] |
✓ |
✓ |
|