# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{\frac {3}{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \] |
✓ |
✓ |
|
\[ {}x y^{2} \left (3 y+x y^{\prime }\right )+x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}5 x y-3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2} \] |
✓ |
✓ |
|
\[ {}x y^{2}+y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y-\left (y+1\right ) x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) \left (x +y y^{\prime }\right ) = \left (x^{2}+y^{2}+x \right ) \left (-y+x y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) \left (x +y y^{\prime }\right )+\sqrt {1+x^{2}+y^{2}}\, \left (y-x y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{4}+x^{2} y^{3}+x y^{2}+y+\left (y^{3} x^{4}-x^{3} y^{2}-x^{3} y+x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+{y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}\left (2 x y^{\prime }-y\right )^{2} = 8 x^{3} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-\left (y^{2}+2 x \right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }-y+\ln \left (y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \] |
✗ |
✓ |
|
\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}\left (-y+x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 x y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0 \] |
✗ |
✓ |
|
\[ {}x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 x y-x^{2} y^{\prime }\right ) \] |
✗ |
✗ |
|
\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} x^{3}+x^{2} y y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \] |
✓ |
✓ |
|
\[ {}y = {y^{\prime }}^{2} \left (1+x \right ) \] |
✓ |
✓ |
|
\[ {}\left (-y+x y^{\prime }\right ) \left (x +y y^{\prime }\right ) = a^{2} y^{\prime } \] |
✓ |
✗ |
|
\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {y {y^{\prime }}^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{4}+y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y-2\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-\left (-1+x \right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (-y^{\prime }+1\right )^{3} \] |
✗ |
✓ |
|
\[ {}4 {y^{\prime }}^{2} = 9 x \] |
✓ |
✓ |
|
\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {2 x}{t} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -\frac {t}{x} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = -x^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \] |
✓ |
✓ |
|
\[ {}2 t x^{\prime } = x \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x^{2}+t^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {t +1}{\sqrt {t}} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \] |
✓ |
✓ |
|
\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \sqrt {x} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = {\mathrm e}^{-2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}u^{\prime } = \frac {1}{5-2 u} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = a x+b \] |
✓ |
✓ |
|
\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = r \left (a -y\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {2 x}{t +1} \] |
✓ |
✓ |
|
\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \] |
✓ |
✓ |
|
\[ {}\left (2 u+1\right ) u^{\prime }-t -1 = 0 \] |
✓ |
✓ |
|
\[ {}R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y+\frac {1}{y} = 0 \] |
✓ |
✓ |
|
\[ {}\left (t +1\right ) x^{\prime }+x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{2 y+1} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \left (4 t -x\right )^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 2 t x^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = x \left (4+x\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = {\mathrm e}^{t +x} \] |
✓ |
✓ |
|
\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \] |
✓ |
✓ |
|