# |
ODE |
Mathematica |
Maple |
\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y-2 x y+x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime } = y \left (2 x^{2}-y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y-x \,{\mathrm e}^{\frac {y}{x}} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \cos \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}y+\sqrt {x y}-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-\sqrt {x^{2}-y^{2}}-y = 0 \] |
✓ |
✓ |
|
\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}-y+x y^{\prime } = y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+x y+y^{2} = x^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y+\sqrt {-x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \ln \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \] |
✓ |
✓ |
|
\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y+x}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x +y} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x +\frac {y}{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \] |
✓ |
✓ |
|
\[ {}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y-x +5}{2 x -y-4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +3 y-5}{x -y-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}} \] |
✓ |
✓ |
|
\[ {}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5 \] |
✓ |
✓ |
|
\[ {}y+2 = \left (-4+2 x +y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x -2 y+5}{y-2 x -4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x -y+1}{2 x +y+4} \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }+\left (x^{2} y^{4}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} \left (y^{\prime }-x \right ) = y^{2} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime } = y^{3}+x y \] |
✓ |
✓ |
|
\[ {}y+x \left (2 x y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+x = 4 \sqrt {y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-\frac {2}{x^{2}} \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }+y = y^{2} \sqrt {x -y^{2} x^{2}} \] |
✓ |
✓ |
|
\[ {}\frac {2 x y y^{\prime }}{3} = \sqrt {x^{6}-y^{4}}+y^{2} \] |
✓ |
✓ |
|
\[ {}2 y+\left (x^{2} y+1\right ) x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x y+1\right ) y+x \left (1-x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (1+y^{2} x^{2}\right )+\left (y^{2} x^{2}-1\right ) x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-y^{4}\right ) y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}y \left (1+\sqrt {x^{2} y^{4}-1}\right )+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 \sqrt {x y} = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y-1}{x -y+3} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \] |
✓ |
✓ |
|
\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {y}{t}-1-y^{2} \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime } = a {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = 4 x^{2} \] |
✓ |
✓ |
|
\[ {}y+\sqrt {x^{2}+y^{2}}-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}y \left (1+y^{2} x^{2}\right )+\left (y^{2} x^{2}-1\right ) x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{y}+\sec \left (\frac {y}{x}\right )-\frac {x y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right ) = \frac {\cos \left (2 \theta \right )}{2}+1 \] |
✓ |
✓ |
|
\[ {}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x \sqrt {x^{2}-y^{2}}\, y^{\prime } \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime }+y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = \cos \left (x \right ) \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+5 y = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = k y \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = x^{2}+x \] |
✓ |
✓ |
|