# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime }+y \cot \left (x \right ) = 5 \,{\mathrm e}^{\cos \left (x \right )} \] |
✓ |
✓ |
|
\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \] |
✓ |
✓ |
|
\[ {}x -x y^{2} = \left (x +x^{2} y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x y+1\right ) y+x \left (y^{2} x^{2}+x y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = y^{4} {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime }+y = y^{3} \left (-1+x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y \tan \left (x \right ) = y^{2} \tan \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \left (x \right ) = y^{3} \sec \left (x \right )^{4} \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+1 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime }-\left (1+x \right ) \sqrt {y-1} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-2 x y+5 y^{2} = \left (x^{2}+2 x y+y^{2}\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \cot \left (x \right ) = y^{2} \sec \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \left (x \right ) = \cos \left (x \right )-2 x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}+2 x y} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (y+1\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+2 y = 3 x -1 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}2 x y y^{\prime } = x^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x -2 y+1}{2 x -4 y} \] |
✓ |
✓ |
|
\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x +x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y = \frac {1}{-x^{2}+1} \] |
✓ |
✓ |
|
\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = \left (x^{2}+1\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}x \left (1+y^{2}\right )-y \left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = \left (-1+x \right ) \sin \left (x \right )+\left (1+x \right ) \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = {\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{2 x} x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \sin \left (x \right )+\cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{4} \] |
✓ |
✓ |
|
\[ {}2 x^{3} y^{\prime } = y \left (y^{2}+3 x^{2}\right ) \] |
✓ |
✓ |
|
\[ {}4 y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+y-\left (1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} \left (x^{2}+2\right )+\left (x^{3}+y^{3}\right ) \left (y-x y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y+1+\left (2 x +2 y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+\left (2 x +3 y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}2 x y^{\prime }-2 y = \sqrt {x^{2}+4 y^{2}} \] |
✓ |
✓ |
|
\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = \left (y+1\right ) \left (1-x \right ) \] |
✓ |
✓ |
|
\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (2 x y+1\right )+x \left (1-x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3}+y^{3}+3 y^{2} y^{\prime } x = 0 \] |
✓ |
✓ |
|
\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+x y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -2 \left (2 x +3 y\right )^{2} \] |
✓ |
✓ |
|
\[ {}x -2 \sin \left (y\right )+3+\left (2 x -4 \sin \left (y\right )-3\right ) \cos \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +\cos \left (x \right ) y+y^{\prime } \sin \left (x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 x +3 y+4+\left (3 x +4 y+5\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{3} x^{3}+\frac {1}{x}+\left (3 x^{4} y^{2}-\frac {1}{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 u^{2}+2 u v+\left (u^{2}+v^{2}\right ) v^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \sqrt {x^{2}+y^{2}}-y+\left (y \sqrt {x^{2}+y^{2}}-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y+1-\left (y-x +3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-\frac {y}{x \left (x +y\right )}+2+\left (\frac {1}{x +y}+2 \left (1+x \right ) y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y+1-\left (x -y-3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -x^{2}-y^{2}+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y-3 x +x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}-y-3 x^{2} \left (x^{2}+y^{2}\right )+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y-\ln \left (x \right )-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2}+y^{2}-2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y-2 y^{2}-\left (x^{2}-3 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y-3 x y^{2}-x y^{\prime } = 0 \] |
✓ |
✓ |
|