3.1.30 Problems 2901 to 3000

Table 3.59: First order ode

#

ODE

Mathematica

Maple

5101

\[ {}y^{\prime }+y \cot \left (x \right ) = 5 \,{\mathrm e}^{\cos \left (x \right )} \]

5102

\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \]

5103

\[ {}x -x y^{2} = \left (x +x^{2} y\right ) y^{\prime } \]

5104

\[ {}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0 \]

5105

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

5106

\[ {}\left (x y+1\right ) y+x \left (y^{2} x^{2}+x y+1\right ) y^{\prime } = 0 \]

5107

\[ {}y^{\prime }+y = x y^{3} \]

5108

\[ {}y^{\prime }+y = y^{4} {\mathrm e}^{x} \]

5109

\[ {}2 y^{\prime }+y = y^{3} \left (-1+x \right ) \]

5110

\[ {}y^{\prime }-2 y \tan \left (x \right ) = y^{2} \tan \left (x \right )^{2} \]

5111

\[ {}y^{\prime }+y \tan \left (x \right ) = y^{3} \sec \left (x \right )^{4} \]

5112

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+1 \]

5113

\[ {}x y y^{\prime }-\left (1+x \right ) \sqrt {y-1} = 0 \]

5114

\[ {}x^{2}-2 x y+5 y^{2} = \left (x^{2}+2 x y+y^{2}\right ) y^{\prime } \]

5115

\[ {}y^{\prime }-y \cot \left (x \right ) = y^{2} \sec \left (x \right )^{2} \]

5116

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

5117

\[ {}y^{\prime }-y \tan \left (x \right ) = \cos \left (x \right )-2 x \sin \left (x \right ) \]

5118

\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}+2 x y} \]

5119

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \left (y+1\right ) \]

5120

\[ {}x y^{\prime }+2 y = 3 x -1 \]

5121

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]

5122

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]

5123

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (2 x \right ) \]

5124

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

5125

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

5126

\[ {}y^{\prime } = \frac {x -2 y+1}{2 x -4 y} \]

5127

\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \]

5128

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]

5129

\[ {}y^{\prime }+x +x y^{2} = 0 \]

5130

\[ {}y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y = \frac {1}{-x^{2}+1} \]

5131

\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = \left (x^{2}+1\right )^{\frac {3}{2}} \]

5132

\[ {}x \left (1+y^{2}\right )-y \left (x^{2}+1\right ) y^{\prime } = 0 \]

5133

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]

5134

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]

5135

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

5172

\[ {}y^{\prime }-5 y = \left (-1+x \right ) \sin \left (x \right )+\left (1+x \right ) \cos \left (x \right ) \]

5173

\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

5174

\[ {}y^{\prime }-5 y = {\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \]

5180

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

5181

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} x +1 \]

5182

\[ {}y^{\prime }-y = \sin \left (x \right )+\cos \left (2 x \right ) \]

5190

\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \]

5199

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

5200

\[ {}y^{\prime }+2 y = 0 \]

5201

\[ {}y^{\prime }+2 y = 2 \]

5202

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

5226

\[ {}x y^{\prime } = 2 y \]

5227

\[ {}x +y y^{\prime } = 0 \]

5228

\[ {}y = x y^{\prime }+{y^{\prime }}^{4} \]

5229

\[ {}2 x^{3} y^{\prime } = y \left (y^{2}+3 x^{2}\right ) \]

5236

\[ {}4 y+x y^{\prime } = 0 \]

5237

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

5238

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

5239

\[ {}1+y-\left (1+x \right ) y^{\prime } = 0 \]

5240

\[ {}x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0 \]

5241

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

5242

\[ {}y^{2} \left (x^{2}+2\right )+\left (x^{3}+y^{3}\right ) \left (y-x y^{\prime }\right ) = 0 \]

5243

\[ {}y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

5244

\[ {}x +y+1+\left (2 x +2 y+1\right ) y^{\prime } = 0 \]

5245

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

5246

\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

5247

\[ {}2 x y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

5248

\[ {}2 x y^{\prime }-2 y = \sqrt {x^{2}+4 y^{2}} \]

5249

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

5250

\[ {}x y y^{\prime } = \left (y+1\right ) \left (1-x \right ) \]

5251

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

5252

\[ {}y \left (2 x y+1\right )+x \left (1-x y\right ) y^{\prime } = 0 \]

5253

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

5254

\[ {}x^{3}+y^{3}+3 y^{2} y^{\prime } x = 0 \]

5255

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

5256

\[ {}x y^{\prime }+2 y = 0 \]

5257

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

5258

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]

5259

\[ {}y^{2}+x y-x y^{\prime } = 0 \]

5260

\[ {}y^{\prime } = -2 \left (2 x +3 y\right )^{2} \]

5261

\[ {}x -2 \sin \left (y\right )+3+\left (2 x -4 \sin \left (y\right )-3\right ) \cos \left (y\right ) y^{\prime } = 0 \]

5262

\[ {}x^{2}-y-x y^{\prime } = 0 \]

5263

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

5264

\[ {}x +\cos \left (x \right ) y+y^{\prime } \sin \left (x \right ) = 0 \]

5265

\[ {}2 x +3 y+4+\left (3 x +4 y+5\right ) y^{\prime } = 0 \]

5266

\[ {}4 y^{3} x^{3}+\frac {1}{x}+\left (3 x^{4} y^{2}-\frac {1}{y}\right ) y^{\prime } = 0 \]

5267

\[ {}2 u^{2}+2 u v+\left (u^{2}+v^{2}\right ) v^{\prime } = 0 \]

5268

\[ {}x \sqrt {x^{2}+y^{2}}-y+\left (y \sqrt {x^{2}+y^{2}}-x \right ) y^{\prime } = 0 \]

5269

\[ {}x +y+1-\left (y-x +3\right ) y^{\prime } = 0 \]

5270

\[ {}y^{2}-\frac {y}{x \left (x +y\right )}+2+\left (\frac {1}{x +y}+2 \left (1+x \right ) y\right ) y^{\prime } = 0 \]

5271

\[ {}2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime } = 0 \]

5272

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

5273

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

5274

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

5275

\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

5276

\[ {}x +y+1-\left (x -y-3\right ) y^{\prime } = 0 \]

5277

\[ {}x -x^{2}-y^{2}+y y^{\prime } = 0 \]

5278

\[ {}2 y-3 x +x y^{\prime } = 0 \]

5279

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

5280

\[ {}-y-3 x^{2} \left (x^{2}+y^{2}\right )+x y^{\prime } = 0 \]

5281

\[ {}y-\ln \left (x \right )-x y^{\prime } = 0 \]

5282

\[ {}3 x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

5283

\[ {}x y-2 y^{2}-\left (x^{2}-3 x y\right ) y^{\prime } = 0 \]

5284

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

5285

\[ {}2 y-3 x y^{2}-x y^{\prime } = 0 \]