3.1.26 Problems 2501 to 2600

Table 3.51: First order ode

#

ODE

Mathematica

Maple

4379

\[ {}1+\frac {y^{2}}{x^{2}}-\frac {2 y y^{\prime }}{x} = 0 \]

4380

\[ {}\frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

4381

\[ {}x +y y^{\prime }+\frac {x y^{\prime }}{x^{2}+y^{2}}-\frac {y}{x^{2}+y^{2}} = 0 \]

4382

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

4383

\[ {}{\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime } = 0 \]

4384

\[ {}n \cos \left (n x +m y\right )-m \sin \left (m x +n y\right )+\left (m \cos \left (n x +m y\right )-n \sin \left (m x +n y\right )\right ) y^{\prime } = 0 \]

4385

\[ {}\frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \]

4386

\[ {}\frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0 \]

4387

\[ {}2 x y+\left (y^{2}-2 x^{2}\right ) y^{\prime } = 0 \]

4388

\[ {}\frac {1}{x}+\frac {y^{\prime }}{y}+\frac {2}{y}-\frac {2 y^{\prime }}{x} = 0 \]

4389

\[ {}-y+x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

4390

\[ {}8 y+10 x +\left (7 x +5 y\right ) y^{\prime } = 0 \]

4391

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

4392

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

4393

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y+\left (x \cos \left (\frac {y}{x}\right )-y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

4394

\[ {}\left (y^{2} x^{2}+x y\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime } = 0 \]

4395

\[ {}\left (y^{3} x^{3}+y^{2} x^{2}+x y+1\right ) y+\left (y^{3} x^{3}-y^{2} x^{2}-x y+1\right ) x y^{\prime } = 0 \]

4396

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

4397

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

4398

\[ {}2 x y+\left (y^{2}-3 x^{2}\right ) y^{\prime } = 0 \]

4399

\[ {}y+\left (2 y-x \right ) y^{\prime } = 0 \]

4400

\[ {}x y^{\prime }-a y+y^{2} = x^{-2 a} \]

4401

\[ {}x y^{\prime }-a y+y^{2} = x^{-\frac {2 a}{3}} \]

4402

\[ {}u^{\prime }+u^{2} = \frac {c}{x^{\frac {4}{3}}} \]

4403

\[ {}u^{\prime }+b u^{2} = \frac {c}{x^{4}} \]

4404

\[ {}u^{\prime }-u^{2} = \frac {2}{x^{\frac {8}{3}}} \]

4405

\[ {}\frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}} = -1 \]

4406

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

4407

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

4408

\[ {}{y^{\prime }}^{2} = \frac {1-x}{x} \]

4409

\[ {}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0 \]

4410

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

4411

\[ {}x = a y^{\prime }+b {y^{\prime }}^{2} \]

4412

\[ {}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

4413

\[ {}x = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

4414

\[ {}y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x} = 0 \]

4415

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

4416

\[ {}1+{y^{\prime }}^{2} = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}} \]

4417

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

4418

\[ {}y = x y^{\prime }+\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \]

4419

\[ {}y = x y^{\prime }+x \sqrt {1+{y^{\prime }}^{2}} \]

4420

\[ {}y = x y^{\prime }+a x \sqrt {1+{y^{\prime }}^{2}} \]

4421

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

4422

\[ {}x +y y^{\prime } = a \sqrt {1+{y^{\prime }}^{2}} \]

4423

\[ {}y y^{\prime } = x +y^{2}-y^{2} {y^{\prime }}^{2} \]

4424

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

4425

\[ {}y-2 x y^{\prime } = x {y^{\prime }}^{2} \]

4426

\[ {}\frac {y-x y^{\prime }}{y^{2}+y^{\prime }} = \frac {y-x y^{\prime }}{1+x^{2} y^{\prime }} \]

4427

\[ {}2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

4428

\[ {}\left (x +\sqrt {y^{2}-x y}\right ) y^{\prime }-y = 0 \]

4429

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

4430

\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

4431

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

4432

\[ {}y^{2}+\left (x \sqrt {-x^{2}+y^{2}}-x y\right ) y^{\prime } = 0 \]

4433

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

4434

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 x y^{\prime } = 0 \]

4435

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

4436

\[ {}x \,{\mathrm e}^{\frac {y}{x}}-y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

4437

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]

4438

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = x y^{\prime } \]

4439

\[ {}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]

4440

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]

4441

\[ {}x +2 y-4-\left (2 x -4 y\right ) y^{\prime } = 0 \]

4442

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

4443

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

4444

\[ {}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0 \]

4445

\[ {}x +y-1-\left (x -y-1\right ) y^{\prime } = 0 \]

4446

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

4447

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

4448

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

4449

\[ {}x +2 y+\left (y-1\right ) y^{\prime } = 0 \]

4450

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

4451

\[ {}x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0 \]

4452

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

4453

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]

4454

\[ {}x +y+2-\left (x -y-4\right ) y^{\prime } = 0 \]

4455

\[ {}3 x^{2} y+8 x y^{2}+\left (x^{3}+8 x^{2} y+12 y^{2}\right ) y^{\prime } = 0 \]

4456

\[ {}\frac {2 x y+1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0 \]

4457

\[ {}2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

4458

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

4459

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

4460

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

4461

\[ {}x^{2}-x +y^{2}-\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = 0 \]

4462

\[ {}2 x +\cos \left (x \right ) y+\left (2 y+\sin \left (x \right )-\sin \left (y\right )\right ) y^{\prime } = 0 \]

4463

\[ {}x \sqrt {x^{2}+y^{2}}-\frac {x^{2} y y^{\prime }}{y-\sqrt {x^{2}+y^{2}}} = 0 \]

4464

\[ {}4 x^{3}-\sin \left (x \right )+y^{3}-\left (y^{2}+1-3 x y^{2}\right ) y^{\prime } = 0 \]

4465

\[ {}{\mathrm e}^{x} \left (y^{3}+x y^{3}+1\right )+3 y^{2} \left (x \,{\mathrm e}^{x}-6\right ) y^{\prime } = 0 \]

4466

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

4467

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]

4468

\[ {}y^{2}+y-x y^{\prime } = 0 \]

4469

\[ {}y \sec \left (x \right )+y^{\prime } \sin \left (x \right ) = 0 \]

4470

\[ {}{\mathrm e}^{x}-\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

4471

\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

4472

\[ {}y^{3}+x y^{2}+y+\left (x^{3}+x^{2} y+x \right ) y^{\prime } = 0 \]

4473

\[ {}3 y-x y^{\prime } = 0 \]

4474

\[ {}y-3 x y^{\prime } = 0 \]

4475

\[ {}y \left (2 x^{2} y^{3}+3\right )+x \left (x^{2} y^{3}-1\right ) y^{\prime } = 0 \]

4476

\[ {}2 x y+x^{2}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

4477

\[ {}x^{2}+\cos \left (x \right ) y+\left (y^{3}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

4478

\[ {}x^{2}+y^{2}+x +x y y^{\prime } = 0 \]