3.29.3 Problems 201 to 300

Table 3.967: Second order, Linear, non-homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

7171

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

7172

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

7173

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

7174

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

7175

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

7176

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

7177

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

7178

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

7179

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

7180

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

7181

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

7182

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

7183

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

7184

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

7185

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

7186

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

7187

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

7188

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

7189

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

7205

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

7206

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

7207

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \]

7220

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \]

7285

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

7287

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

7298

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

7299

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 6 x^{3} {\mathrm e}^{x} \]

7455

\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

7456

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

7459

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

7460

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2} \]

7462

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

7464

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

7465

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

7466

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime } \sin \left (x \right )-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \]

7467

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

7468

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x^{m +1} \]

7471

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

7472

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

7473

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

7474

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

9382

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0 \]

9384

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0 \]

9394

\[ {}y^{\prime \prime }+y^{\prime } \sqrt {x}+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{\frac {3}{2}}}{3}} = 0 \]

9396

\[ {}y^{\prime \prime }-\left (2 \,{\mathrm e}^{x}+1\right ) y^{\prime }+{\mathrm e}^{2 x} y-{\mathrm e}^{3 x} = 0 \]

9408

\[ {}y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (f^{\prime }\left (x \right )+a \right ) y-g \left (x \right ) = 0 \]

9421

\[ {}x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0 \]

9430

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y-{\mathrm e}^{x} = 0 \]

9439

\[ {}x y^{\prime \prime }-x y^{\prime }-y-x \left (1+x \right ) {\mathrm e}^{x} = 0 \]

9455

\[ {}x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0 \]

9486

\[ {}x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right ) = 0 \]

9489

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y-x^{2} a = 0 \]

9493

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y-f \left (x \right ) = 0 \]

9496

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y-3 x^{3} = 0 \]

9504

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-x^{5} \ln \left (x \right ) = 0 \]

9505

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y-x \sin \left (x \right )-\left (x^{2} a +12 a +4\right ) \cos \left (x \right ) = 0 \]

9507

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0 \]

9508

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

9510

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (-v^{2}+x^{2}+1\right ) y-f \left (x \right ) = 0 \]

9512

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y-5 x = 0 \]

9513

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y-x^{2} \ln \left (x \right ) = 0 \]

9514

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y-x^{4}+x^{2} = 0 \]

9516

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y-\sin \left (x \right ) x^{3} = 0 \]

9559

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-2 \cos \left (x \right )+2 x = 0 \]

9562

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-n \left (n +1\right ) y+\frac {\partial }{\partial x}\operatorname {LegendreP}\left (n , x\right ) = 0 \]

9563

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }+2 = 0 \]

9567

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-a = 0 \]

9589

\[ {}x \left (-1+x \right ) y^{\prime \prime }+\left (\left (\operatorname {a1} +\operatorname {b1} +1\right ) x -\operatorname {d1} \right ) y^{\prime }+\operatorname {a1} \operatorname {b1} \operatorname {d1} = 0 \]

9592

\[ {}x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{\frac {7}{3}} = 0 \]

9605

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-\left (4 x^{2}+1\right ) y-4 \sqrt {x^{3}}\, {\mathrm e}^{x} = 0 \]

9608

\[ {}4 x^{2} y^{\prime \prime }+5 x y^{\prime }-y-\ln \left (x \right ) = 0 \]

9612

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} \ln \left (x \right ) y^{\prime }+\left (x^{2} \ln \left (x \right )^{2}+2 x -8\right ) y-4 x^{2} \sqrt {{\mathrm e}^{x} x^{-x}} = 0 \]

9613

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1 = 0 \]

9615

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

9636

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y-\ln \left (x \right )^{3} = 0 \]

9638

\[ {}x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+x y-1 = 0 \]

9669

\[ {}y^{\prime \prime } = -\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \]

9709

\[ {}y^{\prime \prime } = -\frac {b y}{x^{2} \left (x -a \right )^{2}}+c \]

9761

\[ {}y^{\prime \prime } = -\frac {\sin \left (x \right ) y^{\prime }}{\cos \left (x \right )}-\frac {\left (2 x^{2}+x^{2} \sin \left (x \right )^{2}-24 \cos \left (x \right )^{2}\right ) y}{4 x^{2} \cos \left (x \right )^{2}}+\sqrt {\cos \left (x \right )} \]

10901

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0 \]

11041

\[ {}x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y = c \,x^{2} \left (x -a \right )^{2} \]

11274

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

11275

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }+6 y = x \]

11289

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

11290

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1 \]

11292

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

11293

\[ {}y^{\prime \prime } \sin \left (x \right )+2 y^{\prime } \cos \left (x \right )+3 y \sin \left (x \right ) = {\mathrm e}^{x} \]

11296

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 2 \,{\mathrm e}^{x} \]

11297

\[ {}y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+{\mathrm e}^{2 x} y = {\mathrm e}^{4 x} \]

11300

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

11301

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}} \]

11309

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

11314

\[ {}y^{\prime \prime }+x y^{\prime } = x \]

11324

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x \]

11325

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }+4 \left (-1+x \right ) y^{\prime }+2 y = \cos \left (x \right ) \]

11337

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

11345

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

11367

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]

11396

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

11490

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]