3.1.24 Problems 2301 to 2400

Table 3.47: First order ode

#

ODE

Mathematica

Maple

4179

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

4180

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

4181

\[ {}y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y = 0 \]

4182

\[ {}y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0 \]

4183

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

4184

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

4185

\[ {}y {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+x = 0 \]

4186

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

4187

\[ {}y {y^{\prime }}^{2}+y = a \]

4188

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

4189

\[ {}\left (2 x -y\right ) {y^{\prime }}^{2}-2 \left (1-x \right ) y^{\prime }+2-y = 0 \]

4190

\[ {}2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y = 0 \]

4191

\[ {}9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0 \]

4192

\[ {}\left (1-a y\right ) {y^{\prime }}^{2} = a y \]

4193

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

4194

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

4195

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

4196

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

4197

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

4198

\[ {}x y {y^{\prime }}^{2}+\left (a +x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

4199

\[ {}x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y = 0 \]

4200

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \]

4201

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-2 x y+y^{2} = 0 \]

4202

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-2 x y+y^{2} = 0 \]

4203

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

4204

\[ {}y^{2} {y^{\prime }}^{2}-a^{2}+y^{2} = 0 \]

4205

\[ {}y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y = 0 \]

4206

\[ {}y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0 \]

4207

\[ {}y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2} = 0 \]

4208

\[ {}y^{2} {y^{\prime }}^{2}-\left (1+x \right ) y y^{\prime }+x = 0 \]

4209

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0 \]

4210

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a -y^{2} = 0 \]

4211

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+2 y^{2} = 0 \]

4212

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+a -x^{2}+2 y^{2} = 0 \]

4213

\[ {}y^{2} {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (a -1\right ) b +x^{2} a +\left (-a +1\right ) y^{2} = 0 \]

4214

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

4215

\[ {}\left (a^{2}-y^{2}\right ) {y^{\prime }}^{2} = y^{2} \]

4216

\[ {}\left (a^{2}-2 a x y+y^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

4217

\[ {}\left (\left (-a +1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (-a +1\right ) y^{2} = 0 \]

4218

\[ {}\left (\left (-4 a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}-8 a^{2} x y y^{\prime }+x^{2}+\left (-4 a^{2}+1\right ) y^{2} = 0 \]

4219

\[ {}\left (\left (-a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+x^{2}+\left (-a^{2}+1\right ) y^{2} = 0 \]

4220

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

4221

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-x y-2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

4222

\[ {}\left (a^{2}-\left (x -y\right )^{2}\right ) {y^{\prime }}^{2}+2 a^{2} y^{\prime }+a^{2}-\left (x -y\right )^{2} = 0 \]

4223

\[ {}2 y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }-1+x^{2}+y^{2} = 0 \]

4224

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2}+4 y^{2} = 0 \]

4225

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0 \]

4226

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

4227

\[ {}9 y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y = 0 \]

4228

\[ {}\left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

4229

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-3 a^{2} x y y^{\prime }-x^{2} a^{2}+y^{2} = 0 \]

4230

\[ {}\left (a -b \right ) y^{2} {y^{\prime }}^{2}-2 b x y y^{\prime }-a b -b \,x^{2}+a y^{2} = 0 \]

4231

\[ {}a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) {y^{\prime }}^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) = 0 \]

4232

\[ {}x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x \,a^{2} = 0 \]

4233

\[ {}x y^{2} {y^{\prime }}^{2}+\left (a -x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

4234

\[ {}2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-a = 0 \]

4235

\[ {}4 y^{2} {y^{\prime }}^{2} x^{2} = \left (x^{2}+y^{2}\right )^{2} \]

4236

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

4237

\[ {}3 y^{4} {y^{\prime }}^{2} x -y^{5} y^{\prime }+1 = 0 \]

4238

\[ {}9 y^{4} {y^{\prime }}^{2} x -3 y^{5} y^{\prime }-a = 0 \]

4239

\[ {}9 \left (-x^{2}+1\right ) y^{4} {y^{\prime }}^{2}+6 x y^{5} y^{\prime }+4 x^{2} = 0 \]

4240

\[ {}{y^{\prime }}^{3} = b x +a \]

4241

\[ {}{y^{\prime }}^{3} = a \,x^{n} \]

4242

\[ {}{y^{\prime }}^{3}+x -y = 0 \]

4243

\[ {}{y^{\prime }}^{3} = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

4244

\[ {}{y^{\prime }}^{3} = \left (y-a \right )^{2} \left (y-b \right )^{2} \]

4245

\[ {}{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

4246

\[ {}{y^{\prime }}^{3}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} = 0 \]

4247

\[ {}{y^{\prime }}^{3}+y^{\prime }+a -b x = 0 \]

4248

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

4249

\[ {}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

4250

\[ {}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0 \]

4251

\[ {}{y^{\prime }}^{3}-x y^{\prime }+a y = 0 \]

4252

\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

4253

\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

4254

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

4255

\[ {}{y^{\prime }}^{3}+a x y^{\prime }-a y = 0 \]

4256

\[ {}{y^{\prime }}^{3}-\left (b x +a \right ) y^{\prime }+b y = 0 \]

4257

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

4258

\[ {}{y^{\prime }}^{3}-a x y y^{\prime }+2 a y^{2} = 0 \]

4259

\[ {}{y^{\prime }}^{3}-y^{4} y^{\prime } x -y^{5} = 0 \]

4260

\[ {}{y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right ) = 0 \]

4261

\[ {}{y^{\prime }}^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x -2 y} = 0 \]

4262

\[ {}{y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

4263

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{2} = 0 \]

4264

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

4265

\[ {}{y^{\prime }}^{3}-a {y^{\prime }}^{2}+b y+a b x = 0 \]

4266

\[ {}{y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0 \]

4267

\[ {}{y^{\prime }}^{3}+\left (1-3 x \right ) {y^{\prime }}^{2}-x \left (1-3 x \right ) y^{\prime }-1-x^{3} = 0 \]

4268

\[ {}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

4269

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

4270

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 y^{2} y^{\prime } x = 0 \]

4271

\[ {}{y^{\prime }}^{3}-\left (y^{2}+2 x \right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

4272

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+x y+y^{2}\right ) y^{\prime }-y^{3} x^{3} = 0 \]

4273

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

4274

\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

4275

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

4276

\[ {}3 {y^{\prime }}^{3}-x^{4} y^{\prime }+2 x^{3} y = 0 \]

4277

\[ {}4 {y^{\prime }}^{3}+4 y^{\prime } = x \]

4278

\[ {}8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y \]