3.29.1 Problems 1 to 100

Table 3.963: Second order, Linear, non-homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

252

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5} \]

253

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{3} \]

254

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{4} \]

255

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 8 x^{\frac {4}{3}} \]

256

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \ln \left (x \right ) \]

257

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}-1 \]

695

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

696

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 2 t^{3} \]

697

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

698

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (-1+t \right )^{2} {\mathrm e}^{-t} \]

699

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

700

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

701

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

702

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

703

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

704

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (-1+t \right ) {\mathrm e}^{-t} \]

1107

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} \]

1108

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {4}{x^{2}} \]

1109

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

1112

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \left (1+4 x \right ) \]

1114

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 8 \,{\mathrm e}^{-x \left (2+x \right )} \]

1115

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -6 x -4 \]

1116

\[ {}x^{2} y^{\prime \prime }+2 x \left (-1+x \right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y = x^{3} {\mathrm e}^{2 x} \]

1117

\[ {}x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y = {\mathrm e}^{x} x^{2} \]

1118

\[ {}\left (-2 x +1\right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y = \left (4 x^{2}-4 x +1\right ) {\mathrm e}^{x} \]

1119

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 4 x^{4} \]

1120

\[ {}2 x y^{\prime \prime }+\left (1+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 3 \sqrt {x}\, {\mathrm e}^{-x} \]

1121

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = -{\mathrm e}^{-x} \]

1122

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = 4 x^{\frac {5}{2}} {\mathrm e}^{2 x} \]

1123

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 4 x^{2} \]

1137

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 4 x^{4} \]

1139

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y = \left (1+x \right )^{3} {\mathrm e}^{x} \]

1140

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{2} \]

1141

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 2+x \]

1161

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 2 x^{2}+2 \]

1162

\[ {}x^{2} y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = {\mathrm e}^{2 x} \]

1163

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

1164

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 4 \,{\mathrm e}^{-x \left (2+x \right )} \]

1165

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{\frac {5}{2}} \]

1166

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{4} \sin \left (x \right ) \]

1167

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} {\mathrm e}^{-x} \]

1168

\[ {}2 x y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (\sqrt {x}\right ) \]

1169

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 6 x^{3} {\mathrm e}^{x} \]

1170

\[ {}x^{2} y^{\prime \prime }-\left (-1+2 a \right ) x y^{\prime }+a^{2} y = x^{1+a} \]

1171

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right ) \]

1172

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5} \]

1173

\[ {}y^{\prime \prime } \sin \left (x \right )+\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime }+\left (\sin \left (x \right )-\cos \left (x \right )\right ) y = {\mathrm e}^{-x} \]

1174

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 8 x^{\frac {5}{2}} \]

1175

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}+3\right ) y = x^{\frac {7}{2}} \]

1176

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-\left (x^{2}-2\right ) y = 3 x^{4} \]

1177

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = x^{3} {\mathrm e}^{x} \]

1178

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = x^{\frac {3}{2}} \]

1179

\[ {}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y = x^{4} {\mathrm e}^{x} \]

1180

\[ {}x^{2} y^{\prime \prime }-2 x \left (2+x \right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 2 x \,{\mathrm e}^{x} \]

1181

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = x^{4} \]

1182

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 2 \left (-1+x \right )^{2} {\mathrm e}^{x} \]

1183

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = x^{\frac {5}{2}} {\mathrm e}^{x} \]

1184

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = \left (3 x -1\right )^{2} {\mathrm e}^{2 x} \]

1185

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-2 \left (-1+x \right ) y^{\prime }+2 y = \left (-1+x \right )^{2} \]

1186

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (-1+x \right )^{3} y = \left (-1+x \right )^{3} {\mathrm e}^{x} \]

1187

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

1188

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = -2 x^{2} \]

1189

\[ {}\left (1+x \right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y = \left (2 x +3\right )^{2} \]

1762

\[ {}y^{\prime \prime }+\frac {t^{2} y}{4} = f \cos \left (t \right ) \]

1763

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

2254

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-18 y = \ln \left (x \right ) \]

2255

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = \ln \left (x^{2}\right ) \]

2256

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{3} \]

2257

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 1-x \]

2259

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

2260

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x^{2} \ln \left (x \right ) \]

2261

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+3 y = \left (-1+x \right ) \ln \left (x \right ) \]

2278

\[ {}x y^{\prime \prime } = x^{2}+1 \]

2282

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

2283

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

2284

\[ {}x^{2} y^{\prime \prime } = x y^{\prime }+1 \]

2286

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 1 \]

2522

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

2523

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+3 \left (1+x \right ) y^{\prime }+y = x^{2} \]

2529

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \]

2597

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \]

2598

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

2621

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

2660

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

2802

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

2803

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \cos \left (x \right ) \]

2804

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 9 \ln \left (x \right ) \]

2805

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 8 x \ln \left (x \right )^{2} \]

2806

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

2807

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+6 y = 4 \,{\mathrm e}^{2 x} \]

2808

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \frac {x^{2}}{\ln \left (x \right )} \]

2809

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k} \]

2819

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 8 x^{2} {\mathrm e}^{2 x} \]

2820

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 8 x^{4} \]

2823

\[ {}4 x^{2} y^{\prime \prime }+y = \sqrt {x}\, \ln \left (x \right ) \]

2834

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

4646

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

4647

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

4648

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x^{3} \]

4649

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{-x} \]