3.25.3 Problems 201 to 300

Table 3.879: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

4796

\[ {}y^{\prime \prime }+16 y = 0 \]

4797

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

4798

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

4799

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

4800

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

4801

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

4802

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

4867

\[ {}r^{\prime \prime }-6 r^{\prime }+9 r = 0 \]

4899

\[ {}y^{\prime \prime } = -4 y \]

4901

\[ {}y^{\prime \prime } = y \]

4903

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

5045

\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \]

5047

\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \]

5161

\[ {}\frac {x^{\prime \prime }}{2} = -48 x \]

5203

\[ {}y^{\prime \prime }-y = 0 \]

5208

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

5214

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 0 \]

5230

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

5232

\[ {}y^{\prime \prime }-y = 0 \]

5234

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

5348

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

5358

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

5360

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

5362

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

5363

\[ {}y^{\prime \prime }+25 y = 0 \]

5681

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

5683

\[ {}y^{\prime \prime }-\frac {y}{4} = 0 \]

5686

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

5690

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

5694

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

5810

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

5849

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

5850

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]

5851

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

5917

\[ {}y^{\prime \prime }-y = 0 \]

5918

\[ {}y^{\prime \prime }+4 y = 0 \]

5919

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

5944

\[ {}y^{\prime \prime }-4 y = 0 \]

5945

\[ {}3 y^{\prime \prime }+2 y = 0 \]

5946

\[ {}y^{\prime \prime }+16 y = 0 \]

5947

\[ {}y^{\prime \prime } = 0 \]

5948

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]

5949

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

5950

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

5951

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

5952

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

5953

\[ {}y^{\prime \prime }+y = 0 \]

5954

\[ {}y^{\prime \prime }+y = 0 \]

5955

\[ {}y^{\prime \prime }+y = 0 \]

5956

\[ {}y^{\prime \prime }+y = 0 \]

5957

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

5958

\[ {}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]

5959

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

5960

\[ {}y^{\prime \prime }+10 y = 0 \]

5982

\[ {}y^{\prime \prime }+y = 0 \]

5983

\[ {}y^{\prime \prime }-y = 0 \]

5989

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

6094

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

6109

\[ {}y^{\prime \prime }+4 y = 0 \]

6110

\[ {}y^{\prime \prime }-4 y = 0 \]

6136

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

6239

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

6269

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

6270

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6271

\[ {}y^{\prime \prime }+8 y = 0 \]

6272

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6273

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6274

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

6275

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

6276

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

6277

\[ {}y^{\prime \prime }+y = 0 \]

6278

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

6279

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

6280

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

6281

\[ {}y^{\prime \prime } = 4 y \]

6282

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

6283

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

6284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6285

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6286

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

6287

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

6288

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

6289

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

6290

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6291

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

6292

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

6337

\[ {}y^{\prime \prime }+y = 0 \]

6338

\[ {}y^{\prime \prime }-y = 0 \]

6371

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

6372

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

6373

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

6374

\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \]

6379

\[ {}y^{\prime \prime }+9 y = 0 \]

6402

\[ {}y^{\prime \prime } = -3 y \]

6509

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

6551

\[ {}y^{\prime \prime }+y = 0 \]

6553

\[ {}y^{\prime \prime }-y = 0 \]

6555

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

6557

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

6639

\[ {}y^{\prime \prime }+y = 0 \]