# |
ODE |
Mathematica |
Maple |
\[ {}\cos \left (x y\right )-x y \sin \left (x y\right )-x^{2} \sin \left (x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+3 x^{2}+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-2 x +2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 \,{\mathrm e}^{2 x}+2 x y-y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{x}-\frac {y}{x^{2}+y^{2}}+\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y \cos \left (x y\right )-\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (y\right )+\cos \left (x \right ) y+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t} \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = 8 \,{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 4 t \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 6 \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 5 \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = 5 \,{\mathrm e}^{t} \sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = 2 \operatorname {Heaviside}\left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \] |
✓ |
✓ |
|
\[ {}y+y^{\prime } = \delta \left (t -5\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = \delta \left (t -2\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y = 3 \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-5 y = 2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \] |
✓ |
✓ |
|
\[ {}5 x y+4 y^{2}+1+\left (x^{2}+2 x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x \tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} \left (x^{2}+1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \] |
✓ |
✓ |
|
\[ {}\left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y-x = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right ) \] |
✗ |
✓ |
|
\[ {}x^{2} y^{\prime } = x \left (y-1\right )+\left (y-1\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-x^{5}+\sqrt {x} \] |
✓ |
✓ |
|
\[ {}3 y-2 x +\left (3 x -2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+x -1+\left (2 x y+y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{2 y}+\left (1+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime }-y^{2} x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {-2 x +y}{x} \] |
✓ |
✓ |
|
\[ {}x^{3}+y^{3}-y^{2} y^{\prime } x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = x^{2}+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \left (x \right ) = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x +y \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +\frac {1}{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+2 y = \left (2+3 x \right ) {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = \left (1+x \right ) \left (y+1\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x -y}{y+2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x -y+1}{3 y-x +5} \] |
✓ |
✓ |
|
\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 1 \] |
✓ |
✓ |
|
\[ {}\left (x +y^{2}\right ) y^{\prime }+y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cot \left (x \right ) y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cot \left (x \right ) y = \tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \left (x \right ) = \cot \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \ln \left (x \right ) = x^{-x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{3} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+n y = x^{n} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-n y = x^{n} \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+x \right ) y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}\cot \left (x \right ) y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}\cot \left (x \right ) y^{\prime }+y = \tan \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\tan \left (x \right ) y^{\prime }+y = \cot \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\tan \left (x \right ) y^{\prime } = y-\cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\cos \left (x \right ) y = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right ) y^{\prime }+y = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \sin \left (x \right ) = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \left (x \right )+y = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}\sqrt {x^{2}+1}\, y^{\prime }+y = 2 x \] |
✓ |
✓ |
|
\[ {}\sqrt {x^{2}+1}\, y^{\prime }-y = 2 \sqrt {x^{2}+1} \] |
✓ |
✓ |
|
\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, \left (2 y^{\prime }-3\right )+y = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, y^{\prime }+y = \sqrt {x +a}-\sqrt {x +b} \] |
✓ |
✓ |
|
\[ {}3 y^{2} y^{\prime } = 2 x -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 6 x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sec \left (y\right ) \] |
✓ |
✓ |
|
|
|||
|
|||