# |
ODE |
Mathematica |
Maple |
\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \] |
✗ |
✓ |
|
\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \] |
✓ |
✗ |
|
\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}r^{\prime \prime } = -\frac {k}{r^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = 2 k y^{3} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✗ |
✓ |
|
\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \] |
✓ |
✓ |
|
\[ {}x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right ) \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \] |
✓ |
✓ |
|
\[ {}2 \left (y+1\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \] |
✗ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \] |
✓ |
✗ |
|
\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \] |
✗ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 {y^{\prime }}^{3} y \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \] |
✗ |
✓ |
|
\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \] |
✓ |
✓ |
|
\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \] |
✓ |
✓ |
|