3.17.1 Problems 1 to 100

Table 3.705: Second order, non-linear and homogeneous

#

ODE

Mathematica

Maple

2277

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

2281

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

2287

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

2288

\[ {}y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

2289

\[ {}y^{\prime \prime } = y y^{\prime } \]

2291

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

2292

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

2293

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

2296

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

2297

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

2299

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

2300

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

2302

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

2303

\[ {}y^{\prime \prime } = y^{3} \]

2304

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

2305

\[ {}y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]

2307

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

2308

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

2309

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

2310

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]

2312

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

2512

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]

4651

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

4656

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

4657

\[ {}r^{\prime \prime } = -\frac {k}{r^{2}} \]

4658

\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \]

4659

\[ {}y^{\prime \prime } = 2 k y^{3} \]

4660

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

4661

\[ {}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \]

4662

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

4663

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

4666

\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

4667

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

4668

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

4669

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

4672

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

4673

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

4674

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (y+1\right ) y^{\prime } = 0 \]

4686

\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

4839

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4840

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4841

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4842

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

4844

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

4845

\[ {}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

4846

\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \]

4887

\[ {}x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y y^{\prime } \]

5357

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

5433

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

5434

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

5435

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right ) \]

5438

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

5443

\[ {}2 \left (y+1\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0 \]

5860

\[ {}x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \]

5865

\[ {}x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \]

5897

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \]

6093

\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

6095

\[ {}y^{\prime \prime } = y y^{\prime } \]

6098

\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \]

6099

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6100

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6237

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6238

\[ {}x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

6240

\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

6242

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

6244

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

6245

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

6246

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

6265

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

6266

\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \]

6267

\[ {}y y^{\prime \prime }+y^{\prime } = 0 \]

6403

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6821

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

6822

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

6823

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

6824

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6825

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6826

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

6827

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6830

\[ {}y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

6831

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

6833

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6835

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

6836

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

6837

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6838

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6839

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6840

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6842

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

6843

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

6844

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

6845

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6847

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

6848

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

6849

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

6850

\[ {}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

6851

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]

6852

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

6853

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \]

6854

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]