3.14.6 Problems 501 to 600

Table 3.691: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

6781

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 y^{2} x^{2} \]

6782

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]

6783

\[ {}x y \left (x^{2}+y^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+y^{2} x^{2}+y^{4}\right ) \]

6784

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

6785

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

6786

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

6787

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

6788

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

6789

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

6790

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

6791

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

6792

\[ {}4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \]

6793

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

6794

\[ {}y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

6795

\[ {}{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \]

6796

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

6797

\[ {}2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

6798

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

6799

\[ {}y = x y^{\prime }+k {y^{\prime }}^{2} \]

6800

\[ {}x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \]

6801

\[ {}x^{4} {y^{\prime }}^{2}+2 y^{\prime } y x^{3}-4 = 0 \]

6802

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

6803

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

6804

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

6805

\[ {}y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

6806

\[ {}x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]

6807

\[ {}y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

6808

\[ {}{y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0 \]

6809

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

6810

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

6811

\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

6812

\[ {}2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

6813

\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

6814

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

6815

\[ {}{y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]

6816

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

6817

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

6818

\[ {}5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

6819

\[ {}{y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

6820

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} x^{3} \]

6865

\[ {}{y^{\prime }}^{2} x^{3}+x^{2} y y^{\prime }+4 = 0 \]

6866

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

6867

\[ {}9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0 \]

6868

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

6869

\[ {}x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \]

6870

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

6871

\[ {}y^{2} {y^{\prime }}^{2}-\left (1+x \right ) y y^{\prime }+x = 0 \]

6872

\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

6873

\[ {}4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

6874

\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

6875

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

6876

\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

6877

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

6878

\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

6879

\[ {}9 y^{4} {y^{\prime }}^{2} x -3 y^{5} y^{\prime }-1 = 0 \]

6880

\[ {}x^{2} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+y^{2}+1 = 0 \]

6881

\[ {}x^{6} {y^{\prime }}^{2} = 16 y+8 x y^{\prime } \]

6882

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

6883

\[ {}\left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]

6884

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

6885

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

6886

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

6887

\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

6888

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

7061

\[ {}\frac {{y^{\prime }}^{2}}{4}-x y^{\prime }+y = 0 \]

7067

\[ {}y = x y^{\prime }+x^{2} {y^{\prime }}^{2} \]

7073

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

7079

\[ {}f^{\prime } x -f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

7088

\[ {}y = x {y^{\prime }}^{2} \]

7089

\[ {}y y^{\prime } = 1-x {y^{\prime }}^{3} \]

7122

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

7123

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

7253

\[ {}{y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

7254

\[ {}\left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3} \]

7308

\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

7361

\[ {}x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \]

7362

\[ {}y {y^{\prime }}^{2} = 0 \]

7363

\[ {}{y^{\prime }}^{n} = 0 \]

7364

\[ {}x {y^{\prime }}^{n} = 0 \]

7365

\[ {}{y^{\prime }}^{2} = x \]

7366

\[ {}{y^{\prime }}^{2} = x +y \]

7367

\[ {}{y^{\prime }}^{2} = \frac {y}{x} \]

7368

\[ {}{y^{\prime }}^{2} = \frac {y^{2}}{x} \]

7369

\[ {}{y^{\prime }}^{2} = \frac {y^{3}}{x} \]

7370

\[ {}{y^{\prime }}^{3} = \frac {y^{2}}{x} \]

7371

\[ {}{y^{\prime }}^{2} = \frac {1}{x y} \]

7372

\[ {}{y^{\prime }}^{2} = \frac {1}{x y^{3}} \]

7373

\[ {}{y^{\prime }}^{2} = \frac {1}{x^{2} y^{3}} \]

7374

\[ {}{y^{\prime }}^{4} = \frac {1}{x y^{3}} \]

7375

\[ {}{y^{\prime }}^{2} = \frac {1}{x^{3} y^{4}} \]

8704

\[ {}{y^{\prime }}^{2}+a y+b \,x^{2} = 0 \]

8705

\[ {}{y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

8706

\[ {}{y^{\prime }}^{2}+y^{2}-f \left (x \right )^{2} = 0 \]

8707

\[ {}{y^{\prime }}^{2}-y^{3}+y^{2} = 0 \]

8708

\[ {}{y^{\prime }}^{2}-4 y^{3}+a y+b = 0 \]

8709

\[ {}{y^{\prime }}^{2}+a^{2} y^{2} \left (\ln \left (y\right )^{2}-1\right ) = 0 \]

8710

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

8711

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

8712

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

8713

\[ {}{y^{\prime }}^{2}+\left (-2+x \right ) y^{\prime }-y+1 = 0 \]