# |
ODE |
Mathematica |
Maple |
\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y \left (x^{2}+y^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+y^{2} x^{2}+y^{4}\right ) \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+k {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} {y^{\prime }}^{2}+2 y^{\prime } y x^{3}-4 = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \] |
✓ |
✓ |
|
\[ {}x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \] |
✗ |
✓ |
|
\[ {}2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \] |
✗ |
✓ |
|
\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \] |
✓ |
✓ |
|
\[ {}5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{2} x^{3} \] |
✓ |
✗ |
|
\[ {}{y^{\prime }}^{2} x^{3}+x^{2} y y^{\prime }+4 = 0 \] |
✓ |
✓ |
|
\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}-\left (1+x \right ) y y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \] |
✗ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \] |
✗ |
✓ |
|
\[ {}9 y^{4} {y^{\prime }}^{2} x -3 y^{5} y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+y^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}x^{6} {y^{\prime }}^{2} = 16 y+8 x y^{\prime } \] |
✓ |
✓ |
|
\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \] |
✓ |
✓ |
|
\[ {}\left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {{y^{\prime }}^{2}}{4}-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+x^{2} {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}f^{\prime } x -f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \] |
✓ |
✓ |
|
\[ {}y = x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = 1-x {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \] |
✗ |
✗ |
|
\[ {}\left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3} \] |
✗ |
✓ |
|
\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \] |
✓ |
✓ |
|
\[ {}x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{n} = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{n} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = x \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = x +y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {y^{3}}{x} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3} = \frac {y^{2}}{x} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {1}{x y} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {1}{x y^{3}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {1}{x^{2} y^{3}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{4} = \frac {1}{x y^{3}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \frac {1}{x^{3} y^{4}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+a y+b \,x^{2} = 0 \] |
✓ |
✗ |
|
\[ {}{y^{\prime }}^{2}+y^{2}-a^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+y^{2}-f \left (x \right )^{2} = 0 \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{2}-y^{3}+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-4 y^{3}+a y+b = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+a^{2} y^{2} \left (\ln \left (y\right )^{2}-1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+\left (-2+x \right ) y^{\prime }-y+1 = 0 \] |
✓ |
✓ |
|