# |
ODE |
Mathematica |
Maple |
\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \] |
✗ |
✗ |
|
\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x +3 \ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+y^{2} = 1 \] |
✓ |
✓ |
|
\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y+{y^{\prime }}^{2} = x^{3} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2} = 3 x y^{\prime }+y \] |
✓ |
✓ |
|
\[ {}8 x +1 = y {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}x^{2}-3 y y^{\prime }+x {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y+2 x y^{\prime } = x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x = y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x = y-{y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}x +2 y y^{\prime } = x {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{3} = y y^{\prime }+1 \] |
✓ |
✓ |
|
\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 x y^{\prime } \] |
✓ |
✓ |
|
\[ {}2 x +x {y^{\prime }}^{2} = 2 y y^{\prime } \] |
✓ |
✓ |
|
\[ {}x = y y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}+x y y^{\prime } = 2 y^{2} \] |
✓ |
✓ |
|
\[ {}3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1 \] |
✗ |
✓ |
|
\[ {}2 {y^{\prime }}^{5}+2 x y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\frac {1}{{y^{\prime }}^{2}}+x y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}2 y = 3 x y^{\prime }+4+2 \ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }-\sqrt {y^{\prime }} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+\frac {3}{{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }-{y^{\prime }}^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{\mathrm e}^{y^{\prime }} \] |
✓ |
✓ |
|
\[ {}\left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x {y^{\prime }}^{2}-y y^{\prime }-2 = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \] |
✓ |
✓ |
|
\[ {}y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \] |
✓ |
✓ |
|
\[ {}\left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y-x = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right ) \] |
✗ |
✓ |
|
\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }+{y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y^{\prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime } \left (y^{\prime }+2\right ) = y \] |
✓ |
✓ |
|
\[ {}x = y^{\prime } \sqrt {1+{y^{\prime }}^{2}} \] |
✓ |
✓ |
|
\[ {}2 {y^{\prime }}^{2} \left (y-x y^{\prime }\right ) = 1 \] |
✓ |
✓ |
|
\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{3}+y^{2} = x y y^{\prime } \] |
✗ |
✓ |
|
\[ {}2 x y^{\prime }-y = y^{\prime } \ln \left (y y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}y = x y^{\prime }-x^{2} {y^{\prime }}^{3} \] |
✗ |
✓ |
|
\[ {}y \left (y-2 x y^{\prime }\right )^{3} = {y^{\prime }}^{2} \] |
✗ |
✓ |
|
\[ {}x y^{\prime }+y = 4 \sqrt {y^{\prime }} \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }-y = \ln \left (y^{\prime }\right ) \] |
✓ |
✓ |
|
\[ {}5 y+{y^{\prime }}^{2} = x \left (x +y^{\prime }\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = a \,x^{n} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = x -y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = x^{2}+y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+x^{2} = 4 y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+3 x^{2} = 8 y \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+x^{2} a +b y = 0 \] |
✓ |
✗ |
|
\[ {}{y^{\prime }}^{2} = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = 1-y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = a +b y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = y^{2} x^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \left (y-1\right ) y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = a^{2} y^{n} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right ) = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2} \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{2}+2 y^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-2 y^{\prime }+a \left (x -y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+a y^{\prime }+b = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \] |
✓ |
✓ |
|