3.14.1 Problems 1 to 100

Table 3.681: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

2314

\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \]

2315

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

2316

\[ {}1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \]

2317

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]

2318

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

2319

\[ {}x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \]

2320

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

2321

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2} \]

2322

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

2323

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

2324

\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \]

2325

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

2326

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \]

2327

\[ {}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

2328

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

2329

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]

2330

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

2331

\[ {}2 x^{2} y+{y^{\prime }}^{2} = x^{3} y^{\prime } \]

2332

\[ {}y {y^{\prime }}^{2} = 3 x y^{\prime }+y \]

2333

\[ {}8 x +1 = y {y^{\prime }}^{2} \]

2334

\[ {}y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0 \]

2335

\[ {}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime } \]

2336

\[ {}x^{2}-3 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

2337

\[ {}y+2 x y^{\prime } = x {y^{\prime }}^{2} \]

2338

\[ {}x = y^{\prime }+{y^{\prime }}^{2} \]

2339

\[ {}x = y-{y^{\prime }}^{3} \]

2340

\[ {}x +2 y y^{\prime } = x {y^{\prime }}^{2} \]

2341

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

2342

\[ {}x {y^{\prime }}^{3} = y y^{\prime }+1 \]

2343

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 x y^{\prime } \]

2344

\[ {}2 x +x {y^{\prime }}^{2} = 2 y y^{\prime } \]

2345

\[ {}x = y y^{\prime }+{y^{\prime }}^{2} \]

2346

\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime } = y \]

2347

\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \]

2348

\[ {}2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2} \]

2349

\[ {}{y^{\prime }}^{3}+x y y^{\prime } = 2 y^{2} \]

2350

\[ {}3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1 \]

2351

\[ {}2 {y^{\prime }}^{5}+2 x y^{\prime } = y \]

2352

\[ {}\frac {1}{{y^{\prime }}^{2}}+x y^{\prime } = 2 y \]

2353

\[ {}2 y = 3 x y^{\prime }+4+2 \ln \left (y^{\prime }\right ) \]

2354

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

2355

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

2356

\[ {}y = x y^{\prime }-\sqrt {y^{\prime }} \]

2357

\[ {}y = x y^{\prime }+\ln \left (y^{\prime }\right ) \]

2358

\[ {}y = x y^{\prime }+\frac {3}{{y^{\prime }}^{2}} \]

2359

\[ {}y = x y^{\prime }-{y^{\prime }}^{\frac {2}{3}} \]

2360

\[ {}y = x y^{\prime }+{\mathrm e}^{y^{\prime }} \]

2361

\[ {}\left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \]

2362

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-2 = 0 \]

2363

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

2443

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

2444

\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \]

2998

\[ {}y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

2999

\[ {}\left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2} \]

3000

\[ {}y-x = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right ) \]

3222

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

3223

\[ {}y = x y^{\prime }+{y^{\prime }}^{3} \]

3224

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y^{\prime } \]

3225

\[ {}x y^{\prime } \left (y^{\prime }+2\right ) = y \]

3226

\[ {}x = y^{\prime } \sqrt {1+{y^{\prime }}^{2}} \]

3227

\[ {}2 {y^{\prime }}^{2} \left (y-x y^{\prime }\right ) = 1 \]

3228

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

3229

\[ {}{y^{\prime }}^{3}+y^{2} = x y y^{\prime } \]

3230

\[ {}2 x y^{\prime }-y = y^{\prime } \ln \left (y y^{\prime }\right ) \]

3231

\[ {}y = x y^{\prime }-x^{2} {y^{\prime }}^{3} \]

3232

\[ {}y \left (y-2 x y^{\prime }\right )^{3} = {y^{\prime }}^{2} \]

3233

\[ {}x y^{\prime }+y = 4 \sqrt {y^{\prime }} \]

3234

\[ {}2 x y^{\prime }-y = \ln \left (y^{\prime }\right ) \]

3236

\[ {}5 y+{y^{\prime }}^{2} = x \left (x +y^{\prime }\right ) \]

3241

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

3989

\[ {}{y^{\prime }}^{2} = a \,x^{n} \]

3990

\[ {}{y^{\prime }}^{2} = y \]

3991

\[ {}{y^{\prime }}^{2} = x -y \]

3992

\[ {}{y^{\prime }}^{2} = x^{2}+y \]

3993

\[ {}{y^{\prime }}^{2}+x^{2} = 4 y \]

3994

\[ {}{y^{\prime }}^{2}+3 x^{2} = 8 y \]

3995

\[ {}{y^{\prime }}^{2}+x^{2} a +b y = 0 \]

3996

\[ {}{y^{\prime }}^{2} = 1+y^{2} \]

3997

\[ {}{y^{\prime }}^{2} = 1-y^{2} \]

3998

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

3999

\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \]

4000

\[ {}{y^{\prime }}^{2} = a +b y^{2} \]

4001

\[ {}{y^{\prime }}^{2} = y^{2} x^{2} \]

4002

\[ {}{y^{\prime }}^{2} = \left (y-1\right ) y^{2} \]

4003

\[ {}{y^{\prime }}^{2} = \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) \]

4004

\[ {}{y^{\prime }}^{2} = a^{2} y^{n} \]

4005

\[ {}{y^{\prime }}^{2} = a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2} \]

4006

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) = 0 \]

4007

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) = 0 \]

4008

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) = 0 \]

4009

\[ {}{y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right ) = 0 \]

4010

\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2} \]

4011

\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \]

4012

\[ {}{y^{\prime }}^{2}+2 y^{\prime }+x = 0 \]

4013

\[ {}{y^{\prime }}^{2}-2 y^{\prime }+a \left (x -y\right ) = 0 \]

4014

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

4015

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

4016

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

4017

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b = 0 \]

4018

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]