# |
ODE |
Mathematica |
Maple |
\[ {}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (5\right )} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-81 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+216 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}16 y^{\prime \prime \prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|