3.11.5 Problems 401 to 500

Table 3.653: Third and higher order homogeneous ODE

#

ODE

Mathematica

Maple

11749

\[ {}y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

11750

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

11751

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \]

11752

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \]

11753

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

11754

\[ {}y^{\left (5\right )} = 0 \]

11769

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

11770

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

11771

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

11772

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]

11773

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

11774

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

11865

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

11866

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

11867

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0 \]

12166

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

12203

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

12245

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

12247

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

12294

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

12302

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]

12303

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]

12304

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]

12305

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]

12306

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]

12307

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]

12308

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

12422

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

12489

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

12499

\[ {}y^{\prime \prime \prime } = {y^{\prime \prime }}^{2} \]

12500

\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2} = 0 \]

12510

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

12511

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

12512

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0 \]

12513

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

12514

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

12515

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

12516

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

12517

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

12589

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

12608

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

12755

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

12761

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

12762

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

12763

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

12764

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

12765

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

12766

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12767

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

12768

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

12769

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

12771

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

12772

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

12781

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

12782

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]

12806

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

13488

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

13490

\[ {}y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

13491

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

13511

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

13531

\[ {}y^{\prime \prime \prime }+y = 0 \]

13535

\[ {}y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

13556

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

13558

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

13559

\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

13571

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

13572

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

13577

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

13578

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

13617

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

13618

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

13619

\[ {}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

13620

\[ {}y^{\prime \prime \prime \prime }-81 y = 0 \]

13621

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

13622

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

13623

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

13624

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

13625

\[ {}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

13626

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

13627

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

13628

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

13629

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

13630

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

13631

\[ {}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]

13632

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]

13633

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

13634

\[ {}y^{\prime \prime \prime }+216 y = 0 \]

13635

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

13636

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

13637

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

13638

\[ {}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

13639

\[ {}16 y^{\prime \prime \prime \prime }-y = 0 \]

13640

\[ {}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

13641

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

13642

\[ {}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

13667

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

13668

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

13669

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \]

13670

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

13671

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]