# |
ODE |
Mathematica |
Maple |
\[ {}x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}s^{2}+s^{\prime } = \frac {s+1}{s t} \] |
✗ |
✗ |
|
\[ {}x^{\prime }+x t = {\mathrm e}^{x} \] |
✗ |
✗ |
|
\[ {}x x^{\prime }+t^{2} x = \sin \left (t \right ) \] |
✗ |
✗ |
|
\[ {}y y^{\prime }+2 x = 5 y^{3} \] |
✗ |
✗ |
|
\[ {}2 x +y^{2}-\cos \left (x +y\right )-\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}2 x y+\left (2 x +3 y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y = 0 \] |
✗ |
✓ |
|
\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \] |
✗ |
✓ |
|
\[ {}[y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+x y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{2} \left (x \right )+x^{3} y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 x y_{2} \left (x \right )-y_{2} \left (x \right )+{\mathrm e}^{x} y_{3} \left (x \right )] \] |
✗ |
✗ |
|
\[ {}x y^{\prime }+y = y^{\prime } \sqrt {1-x^{2} y} \] |
✗ |
✗ |
|
\[ {}x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \] |
✗ |
✗ |
|
\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (x \right )^{2} y y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \] |
✗ |
✓ |
|
\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \] |
✗ |
✗ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \] |
✗ |
✗ |
|
\[ {}[x^{\prime }\left (t \right ) = t y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right ) t +y \left (t \right )] \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+5 x y^{\prime }+\sqrt {x}\, y = 0 \] |
✗ |
✗ |
|
\[ {}2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \] |
✗ |
✓ |
|
\[ {}y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \] |
✗ |
✓ |
|
\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \] |
✗ |
✓ |
|
\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \] |
✗ |
✓ |
|
\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \] |
✗ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime } = \sqrt {1-x^{2}-y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \] |
✗ |
✓ |
|
\[ {}y y^{\prime \prime } = x \] |
✗ |
✗ |
|
\[ {}y^{2} y^{\prime \prime } = x \] |
✗ |
✓ |
|
\[ {}3 y y^{\prime \prime } = \sin \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \] |
✗ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \] |
✗ |
✗ |
|
\[ {}\left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3} \] |
✗ |
✓ |
|
\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \] |
✗ |
✗ |
|
\[ {}{y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \] |
✗ |
✗ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \] |
✗ |
✓ |
|
\[ {}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0 \] |
✗ |
✓ |
|
\[ {}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0 \] |
✗ |
✓ |
|
\[ {}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0 \] |
✗ |
✓ |
|
\[ {}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime }-a \left (x^{n}-x \right ) y^{3}-y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-\left (a \,x^{n}+b x \right ) y^{3}-c y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+a \phi ^{\prime }\left (x \right ) y^{3}+6 a \phi \left (x \right ) y^{2}+\frac {\left (2 a +1\right ) y \phi ^{\prime \prime }\left (x \right )}{\phi ^{\prime }\left (x \right )}+2+2 a = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-f \left (x \right ) y^{n}-g \left (x \right ) y-h \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-f \left (x \right ) y^{a}-g \left (x \right ) y^{b} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-f \left (x \right ) \left (y-g \left (x \right )\right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+f \left (x \right ) \cos \left (a y\right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-a \left (1+\tan \left (y\right )^{2}\right )+\tan \left (y\right ) \tan \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-\frac {y a f \left (x^{c} y\right )+c \,x^{a} y^{b}}{x b f \left (x^{c} y\right )-x^{a} y^{b}} = 0 \] |
✗ |
✗ |
|
\[ {}x y^{\prime }+f \left (x \right ) \left (-x^{2}+y^{2}\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x y^{\prime }-\sin \left (x -y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}f \left (x \right ) y^{\prime }+g \left (x \right ) s \left (y\right )+h \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime }+x^{3}+y = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime }+a y+\frac {\left (a^{2}-1\right ) x}{4}+b \,x^{n} = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime }+a y+b \,{\mathrm e}^{x}-2 a = 0 \] |
✗ |
✗ |
|
\[ {}\left (y+g \left (x \right )\right ) y^{\prime }-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}x y y^{\prime }-y^{2}+x y+x^{3}-2 x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}x \left (a +y\right ) y^{\prime }+b y+c x = 0 \] |
✗ |
✗ |
|
\[ {}\left (B x y+A \,x^{2}+a x +b y+c \right ) y^{\prime }-B g \left (x \right )^{2}+A x y+\alpha x +\beta y+\gamma = 0 \] |
✗ |
✗ |
|
\[ {}\left (x^{2} y-1\right ) y^{\prime }+8 x y^{2}-8 = 0 \] |
✗ |
✗ |
|
\[ {}\left (x^{n \left (n +1\right )} y-1\right ) y^{\prime }+2 \left (n +1\right )^{2} x^{n -1} \left (x^{n^{2}} y^{2}-1\right ) = 0 \] |
✗ |
✗ |
|
\[ {}\left (g_{1} \left (x \right ) y+g_{0} \left (x \right )\right ) y^{\prime }-f_{1} \left (x \right ) y-f_{2} \left (x \right ) y^{2}-f_{3} \left (x \right ) y^{3}-f_{0} \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}\frac {y^{\prime } f_{\nu }\left (x \right ) \left (-y+y^{p +1}\right )}{y-1}-\frac {g_{\nu }\left (x \right ) \left (-y+y^{q +1}\right )}{y-1} = 0 \] |
✗ |
✓ |
|
\[ {}\left (\frac {\operatorname {e1} \left (x +a \right )}{\left (\left (x +a \right )^{2}+y^{2}\right )^{\frac {3}{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{\frac {3}{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (\left (x +a \right )^{2}+y^{2}\right )^{\frac {3}{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{\frac {3}{2}}}\right ) = 0 \] |
✗ |
✗ |
|
\[ {}f \left (x^{c} y\right ) \left (b x y^{\prime }-a \right )-x^{a} y^{b} \left (x y^{\prime }+c y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{2}+y^{2}-f \left (x \right )^{2} = 0 \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{2}+2 f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}\left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \] |
✗ |
✓ |
|
\[ {}\left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2} = 0 \] |
✗ |
✗ |
|
\[ {}\operatorname {d0} \left (x \right ) {y^{\prime }}^{2}+2 \operatorname {b0} \left (x \right ) y y^{\prime }+\operatorname {c0} \left (x \right ) y^{2}+2 \operatorname {d0} \left (x \right ) y^{\prime }+2 \operatorname {e0} \left (x \right ) y+\operatorname {f0} \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}\left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-x y = 0 \] |
✗ |
✗ |
|
\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a y^{2}+b x +c = 0 \] |
✗ |
✓ |
|
\[ {}\left (\operatorname {b2} y+\operatorname {a2} x +\operatorname {c2} \right )^{2} {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {b0} y+\operatorname {a0} +\operatorname {c0} = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} \left (x y^{2}-1\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (y-x \right ) y^{\prime }-y^{2} \left (x^{2} y-1\right ) = 0 \] |
✗ |
✗ |
|