3.3.33 Problems 3201 to 3300

Table 3.297: Second order ode

#

ODE

Mathematica

Maple

10114

\[ {}\left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]

10115

\[ {}a y \left (y-1\right ) y^{\prime \prime }+\left (b y+c \right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \]

10116

\[ {}a y \left (y-1\right ) y^{\prime \prime }-\left (a -1\right ) \left (2 y-1\right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \]

10117

\[ {}a b y \left (y-1\right ) y^{\prime \prime }-\left (\left (2 a b -a -b \right ) y+\left (-a +1\right ) b \right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \]

10118

\[ {}y^{2} y^{\prime \prime } x -a = 0 \]

10119

\[ {}\left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }+\left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}-x \left (a^{2}-y^{2}\right ) y^{\prime } = 0 \]

10120

\[ {}2 x^{2} y \left (y-1\right ) y^{\prime \prime }-x^{2} \left (3 y-1\right ) {y^{\prime }}^{2}+2 x y \left (y-1\right ) y^{\prime }+\left (a y^{2}+b \right ) \left (y-1\right )^{3}+c x y^{2} \left (y-1\right )+d \,x^{2} y^{2} \left (y+1\right ) = 0 \]

10121

\[ {}x^{3} y^{2} y^{\prime \prime }+\left (x +y\right ) \left (-y+x y^{\prime }\right )^{3} = 0 \]

10122

\[ {}y^{3} y^{\prime \prime }-a = 0 \]

10123

\[ {}y \left (1+y^{2}\right ) y^{\prime \prime }+\left (1-3 y^{2}\right ) {y^{\prime }}^{2} = 0 \]

10124

\[ {}2 y^{3} y^{\prime \prime }+y^{4}-a^{2} x y^{2}-1 = 0 \]

10125

\[ {}2 y^{3} y^{\prime \prime }+y^{2} {y^{\prime }}^{2}-x^{2} a -b x -c = 0 \]

10126

\[ {}2 \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) y^{\prime \prime }-\left (\left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )+\left (y-b \right ) \left (y-c \right )\right ) {y^{\prime }}^{2}+\left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} \left (A_{0} +\frac {B_{0}}{\left (y-a \right )^{2}}+\frac {C_{1}}{\left (y-b \right )^{2}}+\frac {D_{0}}{\left (y-c \right )^{2}}\right ) = 0 \]

10127

\[ {}\left (4 y^{3}-a y-b \right ) y^{\prime \prime }-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

10128

\[ {}\left (4 y^{3}-a y-b \right ) \left (y^{\prime \prime }+f y^{\prime }\right )-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

10129

\[ {}-2 x y \left (1-x \right ) \left (1-y\right ) \left (x -y\right ) y^{\prime \prime }+x \left (1-x \right ) \left (x -2 x y-2 y+3 y^{2}\right ) {y^{\prime }}^{2}+2 y \left (1-y\right ) \left (x^{2}+y-2 x y\right ) y^{\prime }-y^{2} \left (1-y\right )^{2}-f \left (y \left (y-1\right ) \left (y-x \right )\right )^{\frac {3}{2}} = 0 \]

10130

\[ {}2 x^{2} y \left (1-x \right )^{2} \left (1-y\right ) \left (x -y\right ) y^{\prime \prime }-x^{2} \left (1-x \right )^{2} \left (x -2 x y-2 y+3 y^{2}\right ) {y^{\prime }}^{2}-2 x y \left (1-x \right ) \left (1-y\right ) \left (x^{2}+y-2 x y\right ) y^{\prime }+b x \left (1-y\right )^{2} \left (x -y\right )^{2}-c \left (1-x \right ) y^{2} \left (x -y\right )^{2}-d x y^{2} \left (1-x \right ) \left (1-y\right )^{2}+a y^{2} \left (x -y\right )^{2} \left (1-y\right )^{2} = 0 \]

10131

\[ {}\left (y^{2}-1\right ) \left (a^{2} y^{2}-1\right ) y^{\prime \prime }+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1+a^{2}-2 a^{2} y^{2}\right ) y {y^{\prime }}^{2} = 0 \]

10132

\[ {}\left (c +2 b x +x^{2} a +y^{2}\right )^{2} y^{\prime \prime }+d y = 0 \]

10133

\[ {}\sqrt {y}\, y^{\prime \prime }-a = 0 \]

10134

\[ {}\sqrt {x^{2}+y^{2}}\, y^{\prime \prime }-a \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} = 0 \]

10135

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

10136

\[ {}\left (b +a \sin \left (y\right )^{2}\right ) y^{\prime \prime }+a {y^{\prime }}^{2} \cos \left (y\right ) \sin \left (y\right )+A y \left (c +a \sin \left (y\right )^{2}\right ) = 0 \]

10137

\[ {}h \left (y\right ) y^{\prime \prime }+a D\left (h \right )\left (y\right ) {y^{\prime }}^{2}+j \left (y\right ) = 0 \]

10138

\[ {}h \left (y\right ) y^{\prime \prime }-D\left (h \right )\left (y\right ) {y^{\prime }}^{2}-h \left (y\right )^{2} j \left (x , \frac {y^{\prime }}{h \left (y\right )}\right ) = 0 \]

10139

\[ {}y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

10140

\[ {}\left (-y+x y^{\prime }\right ) y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

10141

\[ {}\left (-y+x y^{\prime }\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right )^{2} = 0 \]

10142

\[ {}a \,x^{3} y^{\prime } y^{\prime \prime }+b y^{2} = 0 \]

10143

\[ {}\left (\operatorname {f1} y^{\prime }+\operatorname {f2} y\right ) y^{\prime \prime }+\operatorname {f3} {y^{\prime }}^{2}+\operatorname {f4} \left (x \right ) y y^{\prime }+\operatorname {f5} \left (x \right ) y^{2} = 0 \]

10144

\[ {}\left (2 y^{2} y^{\prime }+x^{2}\right ) y^{\prime \prime }+2 y {y^{\prime }}^{3}+3 x y^{\prime }+y = 0 \]

10145

\[ {}\left ({y^{\prime }}^{2}+y^{2}\right ) y^{\prime \prime }+y^{3} = 0 \]

10146

\[ {}\left ({y^{\prime }}^{2}+a \left (-y+x y^{\prime }\right )\right ) y^{\prime \prime }-b = 0 \]

10147

\[ {}\left (a \sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }\right ) y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

10148

\[ {}h \left (y^{\prime }\right ) y^{\prime \prime }+j \left (y\right ) y^{\prime }+f = 0 \]

10149

\[ {}{y^{\prime \prime }}^{2}-a y-b = 0 \]

10150

\[ {}a^{2} {y^{\prime \prime }}^{2}-2 a x y^{\prime \prime }+y^{\prime } = 0 \]

10151

\[ {}2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}-x y^{\prime \prime } \left (x +4 y^{\prime }\right )+2 \left (x +y^{\prime }\right ) y^{\prime }-2 y = 0 \]

10152

\[ {}3 x^{2} {y^{\prime \prime }}^{2}-2 \left (3 x y^{\prime }+y\right ) y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

10153

\[ {}x^{2} \left (2-9 x \right ) {y^{\prime \prime }}^{2}-6 x \left (1-6 x \right ) y^{\prime } y^{\prime \prime }+6 y y^{\prime \prime }-36 x {y^{\prime }}^{2} = 0 \]

10154

\[ {}F_{1,1}\left (x \right ) {y^{\prime }}^{2}+\left (\left (F_{2,1}\left (x \right )+F_{1,2}\left (x \right )\right ) y^{\prime \prime }+y \left (F_{1,0}\left (x \right )+F_{0,1}\left (x \right )\right )\right ) y^{\prime }+F_{2,2}\left (x \right ) {y^{\prime \prime }}^{2}+y \left (F_{2,0}\left (x \right )+F_{0,2}\left (x \right )\right ) y^{\prime \prime }+F_{0,0}\left (x \right ) y^{2} = 0 \]

10155

\[ {}y {y^{\prime \prime }}^{2}-a \,{\mathrm e}^{2 x} = 0 \]

10156

\[ {}\left (a^{2} y^{2}-b^{2}\right ) {y^{\prime \prime }}^{2}-2 a^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2} {y^{\prime }}^{2}-1\right ) {y^{\prime }}^{2} = 0 \]

10157

\[ {}\left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}-4 x y \left (-y+x y^{\prime }\right )^{3} = 0 \]

10158

\[ {}\left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3}+32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3} = 0 \]

10159

\[ {}\sqrt {a {y^{\prime \prime }}^{2}+b {y^{\prime }}^{2}}+c y y^{\prime \prime }+d {y^{\prime }}^{2} = 0 \]

10177

\[ {}y^{\prime \prime }-f \left (y\right ) = 0 \]

10635

\[ {}y^{\prime } = y^{2}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )} \]

10725

\[ {}y y^{\prime }-y = a^{2} f^{\prime }\left (x \right ) f^{\prime \prime }\left (x \right )-\frac {\left (f \left (x \right )+b \right )^{2} f^{\prime \prime }\left (x \right )}{{f^{\prime }\left (x \right )}^{3}} \]

10825

\[ {}y^{\prime \prime }+a y = 0 \]

10826

\[ {}y^{\prime \prime }-\left (a x +b \right ) y = 0 \]

10827

\[ {}y^{\prime \prime }-\left (x^{2} a^{2}+a \right ) y = 0 \]

10828

\[ {}y^{\prime \prime }-\left (x^{2} a +b \right ) y = 0 \]

10829

\[ {}y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y = 0 \]

10830

\[ {}y^{\prime \prime }-\left (x^{2} a +b c x \right ) y = 0 \]

10831

\[ {}y^{\prime \prime }-a \,x^{n} y = 0 \]

10832

\[ {}y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

10833

\[ {}y^{\prime \prime }-a \,x^{n -2} \left (a \,x^{n}+n +1\right ) y = 0 \]

10834

\[ {}y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y = 0 \]

10835

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

10836

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

10837

\[ {}y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y = 0 \]

10838

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y = 0 \]

10839

\[ {}y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y = 0 \]

10840

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

10841

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

10842

\[ {}y^{\prime \prime }+x y^{\prime }+\left (n -1\right ) y = 0 \]

10843

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 n y = 0 \]

10844

\[ {}y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

10845

\[ {}y^{\prime \prime }+a x y^{\prime }+b x y = 0 \]

10846

\[ {}y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y = 0 \]

10847

\[ {}y^{\prime \prime }+2 a x y^{\prime }+\left (b \,x^{4}+x^{2} a^{2}+c x +a \right ) y = 0 \]

10848

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

10849

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \]

10850

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0 \]

10851

\[ {}y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0 \]

10852

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

10853

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y = 0 \]

10854

\[ {}y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (x^{2} a^{2}+2 a b x +c \right ) y = 0 \]

10855

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

10856

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

10857

\[ {}y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0 \]

10858

\[ {}y^{\prime \prime }+\left (x^{2} a +b \right ) y^{\prime }+c \left (x^{2} a +b -c \right ) y = 0 \]

10859

\[ {}y^{\prime \prime }+\left (x^{2} a +2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0 \]

10860

\[ {}y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+x^{2} a +b +2 x \right ) y = 0 \]

10861

\[ {}y^{\prime \prime }+\left (x^{2} a +b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

10862

\[ {}y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0 \]

10863

\[ {}y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0 \]

10864

\[ {}y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (a b \,x^{3}+a c \,x^{2}+b \right ) y = 0 \]

10865

\[ {}y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a b \,x^{3}-x^{2} a +b^{2}\right ) y = 0 \]

10866

\[ {}y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 x^{2} a +b \right ) y = 0 \]

10867

\[ {}y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0 \]

10868

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime } = 0 \]

10869

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y = 0 \]

10870

\[ {}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

10871

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y = 0 \]

10872

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{m +n}+b \,x^{2 m}+m \,x^{m -1}\right ) y = 0 \]

10873

\[ {}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+a n \,x^{n -1}+c \,x^{m -1}\right ) y = 0 \]

10874

\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y = 0 \]

10875

\[ {}y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y = 0 \]