3.3.29 Problems 2801 to 2900

Table 3.289: Second order ode

#

ODE

Mathematica

Maple

9576

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 a x y^{\prime }+a \left (a -1\right ) y = 0 \]

9577

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{2}+c x +d \right ) y = 0 \]

9578

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

9579

\[ {}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+8 x y^{\prime }+12 y = 0 \]

9580

\[ {}x \left (1+x \right ) y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+y = 0 \]

9581

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

9582

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (2+3 x \right ) y^{\prime }+y = 0 \]

9583

\[ {}\left (x^{2}+x -2\right ) y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }-\left (6 x^{2}+7 x \right ) y = 0 \]

9584

\[ {}x \left (-1+x \right ) y^{\prime \prime }+a y^{\prime }-2 y = 0 \]

9585

\[ {}x \left (-1+x \right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-v \left (v +1\right ) y = 0 \]

9586

\[ {}x \left (-1+x \right ) y^{\prime \prime }+\left (\left (1+a \right ) x +b \right ) y^{\prime } = 0 \]

9587

\[ {}x \left (-1+x \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

9588

\[ {}x \left (-1+x \right ) y^{\prime \prime }+\left (\left (1+a \right ) x +b \right ) y^{\prime }-l y = 0 \]

9589

\[ {}x \left (-1+x \right ) y^{\prime \prime }+\left (\left (\operatorname {a1} +\operatorname {b1} +1\right ) x -\operatorname {d1} \right ) y^{\prime }+\operatorname {a1} \operatorname {b1} \operatorname {d1} = 0 \]

9590

\[ {}x \left (2+x \right ) y^{\prime \prime }+2 \left (n +1+\left (n +1-2 l \right ) x -l \,x^{2}\right ) y^{\prime }+\left (2 l \left (p -n -1\right ) x +2 p l +m \right ) y = 0 \]

9591

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (x^{2}+x -1\right ) y^{\prime }-\left (2+x \right ) y = 0 \]

9592

\[ {}x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{\frac {7}{3}} = 0 \]

9593

\[ {}\left (x^{2}+3 x +4\right ) y^{\prime \prime }+\left (x^{2}+x +1\right ) y^{\prime }-\left (2 x +3\right ) y = 0 \]

9594

\[ {}\left (-1+x \right ) \left (-2+x \right ) y^{\prime \prime }-\left (2 x -3\right ) y^{\prime }+y = 0 \]

9595

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }-\left (-2+x \right ) y^{\prime }-3 y = 0 \]

9596

\[ {}2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y = 0 \]

9597

\[ {}2 x \left (-1+x \right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y = 0 \]

9598

\[ {}2 x \left (-1+x \right ) y^{\prime \prime }+\left (\left (2 v +5\right ) x -2 v -3\right ) y^{\prime }+\left (v +1\right ) y = 0 \]

9599

\[ {}\left (2 x^{2}+6 x +4\right ) y^{\prime \prime }+\left (10 x^{2}+21 x +8\right ) y^{\prime }+\left (12 x^{2}+17 x +8\right ) y = 0 \]

9600

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

9601

\[ {}4 x^{2} y^{\prime \prime }+\left (4 x^{2} a^{2}+1\right ) y = 0 \]

9602

\[ {}4 x^{2} y^{\prime \prime }-\left (-4 k x +4 m^{2}+x^{2}-1\right ) y = 0 \]

9603

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-v^{2}+x \right ) y = 0 \]

9604

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-x^{2}+2 \left (1-m +2 l \right ) x -m^{2}+1\right ) y = 0 \]

9605

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-\left (4 x^{2}+1\right ) y-4 \sqrt {x^{3}}\, {\mathrm e}^{x} = 0 \]

9606

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-\left (x^{2} a +1\right ) y = 0 \]

9607

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+f \left (x \right ) y = 0 \]

9608

\[ {}4 x^{2} y^{\prime \prime }+5 x y^{\prime }-y-\ln \left (x \right ) = 0 \]

9609

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-\left (4 x^{2}+12 x +3\right ) y = 0 \]

9610

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

9611

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+6\right ) \left (x^{2}-4\right ) y = 0 \]

9612

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} \ln \left (x \right ) y^{\prime }+\left (x^{2} \ln \left (x \right )^{2}+2 x -8\right ) y-4 x^{2} \sqrt {{\mathrm e}^{x} x^{-x}} = 0 \]

9613

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1 = 0 \]

9614

\[ {}x \left (4 x -1\right ) y^{\prime \prime }+\left (\left (4 a +2\right ) x -a \right ) y^{\prime }+a \left (a -1\right ) y = 0 \]

9615

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

9616

\[ {}9 x \left (-1+x \right ) y^{\prime \prime }+3 \left (2 x -1\right ) y^{\prime }-20 y = 0 \]

9617

\[ {}16 x^{2} y^{\prime \prime }+\left (4 x +3\right ) y = 0 \]

9618

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }-\left (5+4 x \right ) y = 0 \]

9619

\[ {}\left (27 x^{2}+4\right ) y^{\prime \prime }+27 x y^{\prime }-3 y = 0 \]

9620

\[ {}48 x \left (-1+x \right ) y^{\prime \prime }+\left (152 x -40\right ) y^{\prime }+53 y = 0 \]

9621

\[ {}50 x \left (-1+x \right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y = 0 \]

9622

\[ {}144 x \left (-1+x \right ) y^{\prime \prime }+\left (120 x -48\right ) y^{\prime }+y = 0 \]

9623

\[ {}144 x \left (-1+x \right ) y^{\prime \prime }+\left (168 x -96\right ) y^{\prime }+y = 0 \]

9624

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+\left (c \,x^{2}+d x +f \right ) y = 0 \]

9625

\[ {}\operatorname {a2} \,x^{2} y^{\prime \prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x \right ) y^{\prime }+\left (\operatorname {a0} \,x^{2}+\operatorname {b0} x +\operatorname {c0} \right ) y = 0 \]

9626

\[ {}\left (x^{2} a +1\right ) y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

9627

\[ {}\left (x^{2} a^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0 \]

9628

\[ {}\left (x^{2} a^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y = 0 \]

9629

\[ {}\left (x^{2} a +b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y = 0 \]

9630

\[ {}\operatorname {A2} \left (a x +b \right )^{2} y^{\prime \prime }+\operatorname {A1} \left (a x +b \right ) y^{\prime }+\operatorname {A0} \left (a x +b \right ) y = 0 \]

9631

\[ {}\left (x^{2} a +b x +c \right ) y^{\prime \prime }+\left (d x +f \right ) y^{\prime }+g y = 0 \]

9632

\[ {}x^{3} y^{\prime \prime }+x y^{\prime }-\left (2 x +3\right ) y = 0 \]

9633

\[ {}x^{3} y^{\prime \prime }+2 x y^{\prime }-y = 0 \]

9634

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+\left (x^{2} a +b x +a \right ) y = 0 \]

9635

\[ {}x^{3} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-2 y = 0 \]

9636

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y-\ln \left (x \right )^{3} = 0 \]

9637

\[ {}x^{3} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+x y = 0 \]

9638

\[ {}x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+x y-1 = 0 \]

9639

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 x^{2}+1\right ) y^{\prime }-v \left (v +1\right ) x y = 0 \]

9640

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 x y = 0 \]

9641

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 \left (n +1\right ) x^{2}+2 n +1\right ) y^{\prime }-\left (v -n \right ) \left (v +n +1\right ) x y = 0 \]

9642

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }-\left (2 \left (n -1\right ) x^{2}+2 n -1\right ) y^{\prime }+\left (v +n \right ) \left (-v +n -1\right ) x y = 0 \]

9643

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3} = 0 \]

9644

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-x y = 0 \]

9645

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (3 x^{2}-1\right ) y^{\prime }+x y = 0 \]

9646

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (x^{2} a +b \right ) y^{\prime }+c x y = 0 \]

9647

\[ {}x \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime }-6 x y = 0 \]

9648

\[ {}x \left (x^{2}-2\right ) y^{\prime \prime }-\left (x^{3}+3 x^{2}-2 x -2\right ) y^{\prime }+\left (x^{2}+4 x +2\right ) y = 0 \]

9649

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

9650

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+2 x \left (2+3 x \right ) y^{\prime } = 0 \]

9651

\[ {}y^{\prime \prime } = -\frac {2 \left (-2+x \right ) y^{\prime }}{x \left (-1+x \right )}+\frac {2 \left (1+x \right ) y}{x^{2} \left (-1+x \right )} \]

9652

\[ {}y^{\prime \prime } = \frac {\left (5 x -4\right ) y^{\prime }}{x \left (-1+x \right )}-\frac {\left (9 x -6\right ) y}{x^{2} \left (-1+x \right )} \]

9653

\[ {}y^{\prime \prime } = -\frac {\left (\left (a +b +1\right ) x +\alpha +\beta -1\right ) y^{\prime }}{x \left (-1+x \right )}-\frac {\left (a b x -\alpha \beta \right ) y}{x^{2} \left (-1+x \right )} \]

9654

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{1+x}-\frac {y}{x \left (1+x \right )^{2}} \]

9655

\[ {}y^{\prime \prime } = \frac {2 y^{\prime }}{x \left (-2+x \right )}-\frac {y}{x^{2} \left (-2+x \right )} \]

9656

\[ {}y^{\prime \prime } = \frac {2 y}{x \left (-1+x \right )^{2}} \]

9657

\[ {}y^{\prime \prime } = -\frac {\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +\delta \right )-\delta \right ) x +a \gamma \right ) y^{\prime }}{x \left (-1+x \right ) \left (x -a \right )}-\frac {\left (\alpha \beta x -q \right ) y}{x \left (-1+x \right ) \left (x -a \right )} \]

9658

\[ {}y^{\prime \prime } = -\frac {\left (A \,x^{2}+B x +C \right ) y^{\prime }}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )}-\frac {\left (\operatorname {DD} x +E \right ) y}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )} \]

9659

\[ {}y^{\prime \prime } = \frac {\left (x -4\right ) y^{\prime }}{2 x \left (-2+x \right )}-\frac {\left (x -3\right ) y}{2 x^{2} \left (-2+x \right )} \]

9660

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{1+x}-\frac {\left (3 x +1\right ) y}{4 x^{2} \left (1+x \right )} \]

9661

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (-1+x \right )}+\frac {v \left (v +1\right ) y}{4 x^{2}} \]

9662

\[ {}y^{\prime \prime } = -\frac {\left (\left (1+a \right ) x -1\right ) y^{\prime }}{x \left (-1+x \right )}-\frac {\left (\left (a^{2}-b^{2}\right ) x +c^{2}\right ) y}{4 x^{2} \left (-1+x \right )} \]

9663

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (-1+x \right )}-\frac {\left (a x +b \right ) y}{4 x \left (-1+x \right )^{2}} \]

9664

\[ {}y^{\prime \prime } = -\frac {\left (1-3 x \right ) y}{\left (-1+x \right ) \left (2 x -1\right )^{2}} \]

9665

\[ {}y^{\prime \prime } = -\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \]

9666

\[ {}y^{\prime \prime } = \frac {\left (6 x -1\right ) y^{\prime }}{3 x \left (-2+x \right )}+\frac {y}{3 x^{2} \left (-2+x \right )} \]

9667

\[ {}y^{\prime \prime } = -\frac {\left (a \left (b +2\right ) x^{2}+\left (c -d +1\right ) x \right ) y^{\prime }}{\left (a x +1\right ) x^{2}}-\frac {\left (a b x -c d \right ) y}{\left (a x +1\right ) x^{2}} \]

9668

\[ {}y^{\prime \prime } = \frac {2 \left (a x +2 b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (2 a x +6 b \right ) y}{\left (a x +b \right ) x^{2}} \]

9669

\[ {}y^{\prime \prime } = -\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \]

9670

\[ {}y^{\prime \prime } = -\frac {a y}{x^{4}} \]

9671

\[ {}y^{\prime \prime } = -\frac {\left (x^{2} a \left (-a +1\right )-b \left (x +b \right )\right ) y}{x^{4}} \]

9672

\[ {}y^{\prime \prime } = -\frac {\left ({\mathrm e}^{\frac {2}{x}}-v^{2}\right ) y}{x^{4}} \]

9673

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{3}}+\frac {2 y}{x^{4}} \]

9674

\[ {}y^{\prime \prime } = \frac {\left (a +b \right ) y^{\prime }}{x^{2}}-\frac {\left (x \left (a +b \right )+a b \right ) y}{x^{4}} \]

9675

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {y}{x^{4}} \]