3.3.26 Problems 2501 to 2600

Table 3.283: Second order ode

#

ODE

Mathematica

Maple

8278

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

8279

\[ {}2 x y^{\prime \prime }+\left (-2+x \right ) y^{\prime }-y = 0 \]

8280

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

8281

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

8282

\[ {}u^{\prime \prime }+2 u^{\prime }+u = 0 \]

8283

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

8284

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

8285

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

8286

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]

8287

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8288

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8289

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8290

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8291

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8292

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8293

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8294

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8295

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8296

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8297

\[ {}y^{\prime \prime }-x y^{\prime }-x y = 0 \]

8298

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

8299

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = 0 \]

8300

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

8301

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

8302

\[ {}x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y = 0 \]

8303

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

8304

\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

8305

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

8306

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8307

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

8308

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8309

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \]

8310

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

8311

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

8312

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8313

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

8314

\[ {}y^{\prime \prime } = 0 \]

8315

\[ {}y^{\prime \prime } = \frac {2 y}{x^{2}} \]

8316

\[ {}y^{\prime \prime } = \frac {6 y}{x^{2}} \]

8317

\[ {}y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (-1+x \right )^{2}}+\frac {3}{16 x \left (-1+x \right )}\right ) y \]

8318

\[ {}y^{\prime \prime } = \frac {20 y}{x^{2}} \]

8319

\[ {}y^{\prime \prime } = \frac {12 y}{x^{2}} \]

8320

\[ {}y^{\prime \prime }-\frac {y}{4 x^{2}} = 0 \]

8321

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 0 \]

8322

\[ {}y^{\prime \prime }+\frac {y}{x^{2}} = 0 \]

8323

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = 0 \]

8324

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

8325

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

8326

\[ {}y^{\prime \prime } = \frac {\left (4 x^{6}-8 x^{5}+12 x^{4}+4 x^{3}+7 x^{2}-20 x +4\right ) y}{4 x^{4}} \]

8327

\[ {}y^{\prime \prime } = \left (\frac {6}{x^{2}}-1\right ) y \]

8328

\[ {}y^{\prime \prime } = \left (\frac {x^{2}}{4}-\frac {11}{2}\right ) y \]

8329

\[ {}y^{\prime \prime } = \left (\frac {1}{x}-\frac {3}{16 x^{2}}\right ) y \]

8330

\[ {}y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (-1+x \right )^{2}}+\frac {3}{16 x \left (-1+x \right )}\right ) y \]

8331

\[ {}y^{\prime \prime } = -\frac {\left (5 x^{2}+27\right ) y}{36 \left (x^{2}-1\right )^{2}} \]

8332

\[ {}y^{\prime \prime } = -\frac {y}{4 x^{2}} \]

8333

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

8334

\[ {}x^{2} y^{\prime \prime } = 2 y \]

8335

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

8336

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

8337

\[ {}\left (-2+x \right )^{2} y^{\prime \prime }-\left (-2+x \right ) y^{\prime }-3 y = 0 \]

8386

\[ {}y^{\prime }+a \phi ^{\prime }\left (x \right ) y^{3}+6 a \phi \left (x \right ) y^{2}+\frac {\left (2 a +1\right ) y \phi ^{\prime \prime }\left (x \right )}{\phi ^{\prime }\left (x \right )}+2+2 a = 0 \]

9335

\[ {}y^{\prime \prime } = 0 \]

9336

\[ {}y^{\prime \prime }+y = 0 \]

9337

\[ {}y^{\prime \prime }+y-\sin \left (n x \right ) = 0 \]

9338

\[ {}y^{\prime \prime }+y-a \cos \left (b x \right ) = 0 \]

9339

\[ {}y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0 \]

9340

\[ {}y^{\prime \prime }-y = 0 \]

9341

\[ {}y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0 \]

9342

\[ {}y^{\prime \prime }+a^{2} y-\cot \left (a x \right ) = 0 \]

9343

\[ {}y^{\prime \prime }+l y = 0 \]

9344

\[ {}y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

9345

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

9346

\[ {}y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

9347

\[ {}y^{\prime \prime }-\left (x^{2} a^{2}+a \right ) y = 0 \]

9348

\[ {}y^{\prime \prime }-c \,x^{a} y = 0 \]

9349

\[ {}y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y = 0 \]

9350

\[ {}y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y = 0 \]

9351

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

9352

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0 \]

9353

\[ {}y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y = 0 \]

9354

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y = 0 \]

9355

\[ {}y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y = 0 \]

9356

\[ {}y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y = 0 \]

9357

\[ {}y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y = 0 \]

9358

\[ {}y^{\prime \prime }-\left (1+2 \tan \left (x \right )^{2}\right ) y = 0 \]

9359

\[ {}y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y = 0 \]

9360

\[ {}y^{\prime \prime }-\left (n \left (n +1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+B \right ) y = 0 \]

9361

\[ {}y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y = 0 \]

9363

\[ {}y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y = 0 \]

9364

\[ {}y^{\prime \prime }+\left (P \left (x \right )+l \right ) y = 0 \]

9365

\[ {}y^{\prime \prime }-f \left (x \right ) y = 0 \]

9366

\[ {}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

9367

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

9368

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

9369

\[ {}y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right ) = 0 \]

9370

\[ {}y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y = 0 \]

9371

\[ {}y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y = 0 \]

9372

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

9373

\[ {}y^{\prime \prime }+x y^{\prime }-y = 0 \]

9374

\[ {}y^{\prime \prime }+x y^{\prime }+\left (n +1\right ) y = 0 \]