3.3.18 Problems 1701 to 1800

Table 3.267: Second order ode

#

ODE

Mathematica

Maple

7469

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

7470

\[ {}\cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

7471

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

7472

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

7473

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

7474

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

7475

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 \left (x^{2}+1\right ) y = 0 \]

7476

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

7477

\[ {}x^{2} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{2} = 0 \]

7478

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

7479

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

7486

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

7487

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

7491

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7492

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

7493

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

7494

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 x y^{\prime }+12 y = 0 \]

7495

\[ {}3 y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

7496

\[ {}5 y^{\prime \prime }-2 x y^{\prime }+10 y = 0 \]

7497

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

7498

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

7499

\[ {}y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

7500

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

7501

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

7502

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{2} y = 0 \]

7503

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

7504

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = 0 \]

7505

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

7506

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

7507

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = 0 \]

7508

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

7509

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7510

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

7511

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

7512

\[ {}2 y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

7513

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7514

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

7515

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7516

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7517

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

7518

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7519

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7520

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

7521

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

7522

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

7523

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = 0 \]

7524

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y = 0 \]

7525

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7526

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

7527

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}+3\right ) y = 0 \]

7528

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-\left (x^{2}-2\right ) y = 0 \]

7529

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

7530

\[ {}x^{2} y^{\prime \prime }-2 x \left (2+x \right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 0 \]

7531

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

7532

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7533

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = 0 \]

7534

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

7535

\[ {}\left (2+x \right ) y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

7536

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2-x \right ) y = 0 \]

7537

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0 \]

7538

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0 \]

7539

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0 \]

7540

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 x y^{\prime }+6 y = 0 \]

7541

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

7542

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }+20 y = 0 \]

7543

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }-12 y = 0 \]

7544

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0 \]

7545

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }-4 y = 0 \]

7546

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-10 x y^{\prime }+28 y = 0 \]

7547

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7548

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-9 x y^{\prime }-6 y = 0 \]

7549

\[ {}\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (-2+x \right ) y^{\prime }+36 y = 0 \]

7550

\[ {}y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y = 0 \]

7551

\[ {}\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y = 0 \]

7552

\[ {}\left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (1+x \right ) y^{\prime }+60 y = 0 \]

7553

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 x y = 0 \]

7554

\[ {}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0 \]

7555

\[ {}y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y = 0 \]

7556

\[ {}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0 \]

7557

\[ {}y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y = 0 \]

7558

\[ {}\left (3 x +1\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

7559

\[ {}\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y = 0 \]

7560

\[ {}\left (2+x \right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y = 0 \]

7561

\[ {}\left (x +4\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y = 0 \]

7562

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (1+x \right ) y^{\prime }+8 y = 0 \]

7563

\[ {}x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y = 0 \]

7564

\[ {}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y = 0 \]

7565

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (2-x \right ) y = 0 \]

7566

\[ {}y^{\prime \prime }+3 x y^{\prime }+\left (2 x^{2}+4\right ) y = 0 \]

7567

\[ {}\left (4 x +2\right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y = 0 \]

7568

\[ {}y^{\prime \prime }-3 x y^{\prime }+\left (2 x^{2}+5\right ) y = 0 \]

7569

\[ {}2 y^{\prime \prime }+5 x y^{\prime }+\left (2 x^{2}+4\right ) y = 0 \]

7570

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

7571

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

7572

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

7573

\[ {}3 x^{2} y^{\prime \prime }+2 x \left (-2 x^{2}+x +1\right ) y^{\prime }+\left (-8 x^{2}+2 x \right ) y = 0 \]

7574

\[ {}12 x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y = 0 \]

7575

\[ {}x^{2} \left (10 x^{2}+x +5\right ) y^{\prime \prime }+x \left (48 x^{2}+3 x +4\right ) y^{\prime }+\left (36 x^{2}+x \right ) y = 0 \]

7576

\[ {}18 x^{2} \left (1+x \right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y = 0 \]

7577

\[ {}2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y = 0 \]