3.3.13 Problems 1201 to 1300

Table 3.257: Second order ode

#

ODE

Mathematica

Maple

6010

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6011

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

6012

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

6013

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6014

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6016

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

6017

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6018

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

6029

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \]

6030

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0 \]

6031

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

6032

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

6033

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6034

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{2} \]

6036

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 1 \]

6037

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = 0 \]

6038

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

6039

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 \pi y = x \]

6091

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

6092

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

6093

\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

6094

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

6095

\[ {}y^{\prime \prime } = y y^{\prime } \]

6096

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

6097

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

6098

\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \]

6099

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6100

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

6109

\[ {}y^{\prime \prime }+4 y = 0 \]

6110

\[ {}y^{\prime \prime }-4 y = 0 \]

6136

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

6155

\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

6156

\[ {}y^{\prime \prime } y^{\prime } = x \left (1+x \right ) \]

6237

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6238

\[ {}x y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

6239

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

6240

\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

6241

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

6242

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

6243

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

6244

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

6245

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

6246

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

6247

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

6248

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

6265

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

6266

\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \]

6267

\[ {}y y^{\prime \prime }+y^{\prime } = 0 \]

6268

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

6269

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

6270

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6271

\[ {}y^{\prime \prime }+8 y = 0 \]

6272

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6273

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6274

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

6275

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

6276

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

6277

\[ {}y^{\prime \prime }+y = 0 \]

6278

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

6279

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

6280

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

6281

\[ {}y^{\prime \prime } = 4 y \]

6282

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

6283

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

6284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6285

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6286

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

6287

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

6288

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

6289

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

6290

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

6291

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

6292

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

6293

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

6294

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

6295

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

6296

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

6297

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

6298

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

6299

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

6300

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

6301

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

6302

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

6303

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

6304

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

6305

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

6306

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

6307

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

6308

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

6309

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

6310

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

6311

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

6312

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

6313

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

6314

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

6315

\[ {}y^{\prime \prime }-3 y = {\mathrm e}^{2 x} \]

6317

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

6318

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

6319

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

6320

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]