# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{5 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = x \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y = 2+{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = -2 \sin \left (x \right )+4 x \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y = \cos \left (x \sqrt {5}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = x \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x +x^{2} \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \] |
✓ |
✓ |
|
\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = \ln \left (1+x \right )^{2}+x -1 \] |
✓ |
✓ |
|
\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 2 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 8 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (2+x \right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {1+x}{x} \] |
✓ |
✓ |
|
\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \] |
✓ |
✓ |
|
\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+\cos \left (x \right ) y = x \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = 2+x \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (2+3 x \right ) {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (9 x^{2}+6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 4 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \frac {-x^{2}+1}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {2}{x^{3}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right ) \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \] |
✓ |
✓ |
|
\[ {}\left (2 y+x \right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime } = 2 \] |
✓ |
✓ |
|
\[ {}2 \left (y+1\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y}{4} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0 |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0 |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0 |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0 |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0 |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0 |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0 |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (-1+t \right ) \] |
✓ |
✓ |
|
|
|||
|
|||