# |
ODE |
Mathematica |
Maple |
\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \] |
✗ |
✗ |
|
\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 36 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|