# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime } = -\frac {\left (-a^{2} \cos \left (x \right )^{2}-\left (3-2 a \right ) \cos \left (x \right )-3+3 a \right ) y}{\sin \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-\left (a^{2} \cos \left (x \right )^{2}+b \cos \left (x \right )+\frac {b^{2}}{\left (2 a -3\right )^{2}}+3 a +2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {\left (-\left (a^{2} b^{2}-\left (1+a \right )^{2}\right ) \sin \left (x \right )^{2}-a \left (1+a \right ) b \sin \left (2 x \right )-a \left (a -1\right )\right ) y}{\sin \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {\left (a \cos \left (x \right )^{2}+b \sin \left (x \right )^{2}+c \right ) y}{\sin \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {\cos \left (2 x \right ) y^{\prime }}{\sin \left (2 x \right )}-2 y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (-17 \sin \left (x \right )^{2}-1\right ) y}{4 \sin \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {\sin \left (x \right ) y^{\prime }}{\cos \left (x \right )}-\frac {\left (2 x^{2}+x^{2} \sin \left (x \right )^{2}-24 \cos \left (x \right )^{2}\right ) y}{4 x^{2} \cos \left (x \right )^{2}}+\sqrt {\cos \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {4 \sin \left (3 x \right ) y}{\sin \left (x \right )^{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {\left (4 v \left (v +1\right ) \sin \left (x \right )^{2}-\cos \left (x \right )^{2}+2-4 n^{2}\right ) y}{4 \sin \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {\left (3 \sin \left (x \right )^{2}+1\right ) y^{\prime }}{\cos \left (x \right ) \sin \left (x \right )}+\frac {\sin \left (x \right )^{2} y}{\cos \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = \frac {\phi ^{\prime }\left (x \right ) y^{\prime }}{\phi \left (x \right )-\phi \left (a \right )}-\frac {\left (-n \left (n +1\right ) \left (\phi \left (x \right )-\phi \left (a \right )\right )^{2}+D^{\left (2\right )}\left (\phi \right )\left (a \right )\right ) y}{\phi \left (x \right )-\phi \left (a \right )} \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = -\frac {\left (\phi \left (x^{3}\right )-\phi \left (x \right ) \phi ^{\prime }\left (x \right )-\phi ^{\prime \prime }\left (x \right )\right ) y^{\prime }}{\phi ^{\prime }\left (x \right )+\phi \left (x \right )^{2}}-\frac {\left ({\phi ^{\prime }\left (x \right )}^{2}-\phi \left (x \right )^{2} \phi ^{\prime }\left (x \right )-\phi \left (x \right ) \phi ^{\prime \prime }\left (x \right )\right ) y}{\phi ^{\prime }\left (x \right )+\phi \left (x \right )^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = \frac {2 \,\operatorname {JacobiSN}\left (x , k\right ) \operatorname {JacobiCN}\left (x , k\right ) \operatorname {JacobiDN}\left (x , k\right ) y^{\prime }-2 \left (1-2 \left (k^{2}+1\right ) \operatorname {JacobiSN}\left (a , k\right )^{2}+3 k^{2} \operatorname {JacobiSN}\left (a , k\right )^{4}\right ) y}{\operatorname {JacobiSN}\left (x , k\right )^{2}-\operatorname {JacobiSN}\left (a , k\right )} \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = -\frac {x y^{\prime }}{f \left (x \right )}+\frac {y}{f \left (x \right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = -\frac {\left (2 f \left (x \right ) {g^{\prime }\left (x \right )}^{2} g \left (x \right )-\left (g \left (x \right )^{2}-1\right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )\right ) y^{\prime }}{f \left (x \right ) g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )}-\frac {\left (\left (g \left (x \right )^{2}-1\right ) \left (f^{\prime }\left (x \right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )-f \left (x \right ) f^{\prime \prime }\left (x \right ) g^{\prime }\left (x \right )\right )-\left (2 f^{\prime }\left (x \right ) g \left (x \right )+v \left (v +1\right ) f \left (x \right ) g^{\prime }\left (x \right )\right ) f \left (x \right ) {g^{\prime }\left (x \right )}^{2}\right ) y}{f \left (x \right )^{2} g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (-1+x \right ) y}{x^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (-x -1\right ) y}{x^{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\left (a x +b \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\left (x^{2} a^{2}+a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\left (x^{2} a +b \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\left (x^{2} a +b c x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a \,x^{n} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a \,x^{n -2} \left (a \,x^{n}+n +1\right ) y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+x y^{\prime }+\left (n -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+2 n y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a x y^{\prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a x y^{\prime }+b x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 a x y^{\prime }+\left (b \,x^{4}+x^{2} a^{2}+c x +a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (x^{2} a^{2}+2 a b x +c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (x^{2} a +b \right ) y^{\prime }+c \left (x^{2} a +b -c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (x^{2} a +2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+x^{2} a +b +2 x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (x^{2} a +b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (a b \,x^{3}+a c \,x^{2}+b \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a b \,x^{3}-x^{2} a +b^{2}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 x^{2} a +b \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{m +n}+b \,x^{2 m}+m \,x^{m -1}\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+a n \,x^{n -1}+c \,x^{m -1}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-x \,a^{2}\right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-x \,a^{2}\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+x^{n} \left (x^{2} a +\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }-\left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (m +1\right ) x^{m -1}\right ) y = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a b \,x^{m +n}+b \left (m +1\right ) x^{m -1}-a \,x^{n -1}\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a b \,x^{m +n}+b c \,x^{m}+a n \,x^{n -1}\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+a y^{\prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+a y^{\prime }+b x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+n y^{\prime }+b \,x^{1-2 n} y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y = 0 \] |
✗ |
✓ |
|
\[ {}x y^{\prime \prime }+a x y^{\prime }+a y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (b -x \right ) y^{\prime }-a y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (x \left (a +b \right )+n +m \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+x \,a^{2}+a \right ) y = 0 \] |
✓ |
✓ |
|