3.2.9 Problems 801 to 900

Table 3.155: Second order linear ODE

#

ODE

Mathematica

Maple

4816

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

4817

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right ) \]

4818

\[ {}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right ) \]

4819

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]

4820

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right ) \]

4821

\[ {}5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right ) \]

4822

\[ {}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right ) \]

4823

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

4824

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \]

4825

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \]

4826

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \]

4827

\[ {}5 y^{\prime \prime }+6 y^{\prime }+2 y = x^{2}+6 x \]

4828

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

4829

\[ {}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x} \]

4830

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x} \]

4831

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x} \]

4832

\[ {}y^{\prime \prime }+y = 8 x \sin \left (x \right ) \]

4833

\[ {}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \]

4834

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5 \]

4835

\[ {}y^{\prime \prime }-y = \sinh \left (x \right ) \]

4836

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

4837

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \]

4838

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

4843

\[ {}y^{\prime \prime }+2 x y^{\prime } = 0 \]

4848

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

4849

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

4850

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

4851

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+6 y = 0 \]

4852

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 8 x^{4} \]

4853

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x} \]

4854

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 2 x^{3} \]

4855

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 6 x^{2} \ln \left (x \right ) \]

4856

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

4857

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 2 x \]

4858

\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

4859

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4860

\[ {}x y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \]

4861

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

4862

\[ {}x^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

4863

\[ {}x \left (1+x \right ) y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+y = 0 \]

4867

\[ {}r^{\prime \prime }-6 r^{\prime }+9 r = 0 \]

4869

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \cos \left (x \right ) {\mathrm e}^{-x} \]

4871

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

4875

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

4876

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 26 \,{\mathrm e}^{3 x} \]

4877

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \cos \left (x \right ) {\mathrm e}^{-2 x} \]

4878

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 6 \,{\mathrm e}^{2 x} \]

4879

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{2 x} \]

4883

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \]

4890

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 6 \]

4899

\[ {}y^{\prime \prime } = -4 y \]

4901

\[ {}y^{\prime \prime } = y \]

4903

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

4905

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

4907

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

4909

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4911

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

5045

\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \]

5047

\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \]

5050

\[ {}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \]

5051

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \]

5052

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]

5053

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

5054

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \]

5064

\[ {}x \left (1+x \right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (-1+x \right ) y = 0 \]

5065

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (-2 x +1\right ) y^{\prime }-2 y = 0 \]

5066

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

5067

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

5068

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

5069

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

5070

\[ {}x y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

5071

\[ {}x \left (-1+x \right )^{2} y^{\prime \prime }-2 y = 0 \]

5074

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \]

5136

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 8 \]

5137

\[ {}y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x} \]

5138

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x} \]

5139

\[ {}y^{\prime \prime }+25 y = 5 x^{2}+x \]

5140

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \left (x \right ) \]

5141

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \]

5142

\[ {}3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3 \]

5143

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x} \]

5144

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x} \]

5145

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18 \]

5146

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right ) \]

5147

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \left (x \right ) \]

5148

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right ) \]

5149

\[ {}y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x} \]

5150

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2} \]

5151

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x} \]

5152

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1 \]

5153

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

5154

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t} \]

5155

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right ) \]

5156

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right ) \]

5157

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right ) \]

5158

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x \]

5159

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 85 \sin \left (3 t \right ) \]

5160

\[ {}y^{\prime \prime } = 3 \sin \left (x \right )-4 y \]

5161

\[ {}\frac {x^{\prime \prime }}{2} = -48 x \]

5162

\[ {}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right ) \]