[tail] [up]
∫ArcTan(d+ex)a+bx+cx2dx
Optimal antiderivative arctan(ex+d)ln(2e(b+2cx−−4ac+b2)(1−I(ex+d))(2c(I−d)+e(b−−4ac+b2)))−4ac+b2−arctan(ex+d)ln(2e(b+2cx+−4ac+b2)(1−I(ex+d))(2c(I−d)+e(b+−4ac+b2)))−4ac+b2−Ipolylog(2,1+4cd−4c(ex+d)−2e(b−−4ac+b2)(1−I(ex+d))(2Ic−2cd+be−e−4ac+b2))2−4ac+b2+Ipolylog(2,1+4cd−4c(ex+d)−2e(b+−4ac+b2)(1−I(ex+d))(2c(I−d)+e(b+−4ac+b2)))2−4ac+b2
command
Integrate[ArcTan[d + e*x]/(a + b*x + c*x^2),x]
Mathematica 13.1 output
$Aborted
Mathematica 12.3 output
i(−Li2(2c(d+ex−i)2c(d−i)+(b2−4ac−b)e)+Li2(2c(d+ex−i)2c(d−i)−(b+b2−4ac)e)+Li2(2c(d+ex+i)2c(d+i)+(b2−4ac−b)e)−Li2(2c(d+ex+i)2c(d+i)−(b+b2−4ac)e)+log(1−i(d+ex))log(e(b2−4ac−b−2cx)e(b2−4ac−b)+2c(d+i))−log(1−i(d+ex))log(e(b2−4ac+b+2cx)e(b2−4ac+b)−2c(d+i))−log(1+i(d+ex))log(e(b2−4ac−b−2cx)e(b2−4ac−b)+2c(d−i))+log(1+i(d+ex))log(e(b2−4ac+b+2cx)e(b2−4ac+b)−2c(d−i)))2b2−4ac
[front] [up]