\[ \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx \]
Optimal antiderivative \[ -\frac {2 \left (e x +d \right )}{3 \left (-a \,e^{2}+c \,d^{2}\right ) \left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}+\frac {8 e \left (2 c d e x +a \,e^{2}+c \,d^{2}\right )}{3 \left (-a \,e^{2}+c \,d^{2}\right )^{3} \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}} \]
command
integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")
Giac 1.9.0-11 via sagemath 9.6 output
\[ \text {could not integrate} \]
Giac 1.7.0 via sagemath 9.3 output
\[ \frac {2 \, {\left ({\left (4 \, {\left (\frac {2 \, {\left (c^{3} d^{4} e^{3} - a c^{2} d^{2} e^{5}\right )} x}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}} + \frac {3 \, {\left (c^{3} d^{5} e^{2} - a^{2} c d e^{6}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x + \frac {3 \, {\left (c^{3} d^{6} e + 5 \, a c^{2} d^{4} e^{3} - 5 \, a^{2} c d^{2} e^{5} - a^{3} e^{7}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x - \frac {c^{3} d^{7} - 7 \, a c^{2} d^{5} e^{2} + 3 \, a^{2} c d^{3} e^{4} + 3 \, a^{3} d e^{6}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )}}{3 \, {\left (c d x^{2} e + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}} \]