9.4 Problem number 1957

\[ \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx \]

Optimal antiderivative \[ \frac {\arctanh \! \left (\frac {2 c d e x +a \,e^{2}+c \,d^{2}}{2 \sqrt {c}\, \sqrt {d}\, \sqrt {e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}\right ) \sqrt {e}}{c^{\frac {3}{2}} d^{\frac {3}{2}}}-\frac {2 \left (e x +d \right )}{c d \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}} \]

command

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -\frac {2 \, {\left (\frac {{\left (c^{2} d^{4} e - 2 \, a c d^{2} e^{3} + a^{2} e^{5}\right )} x}{c^{3} d^{5} - 2 \, a c^{2} d^{3} e^{2} + a^{2} c d e^{4}} + \frac {c^{2} d^{5} - 2 \, a c d^{3} e^{2} + a^{2} d e^{4}}{c^{3} d^{5} - 2 \, a c^{2} d^{3} e^{2} + a^{2} c d e^{4}}\right )}}{\sqrt {c d x^{2} e + a d e + {\left (c d^{2} + a e^{2}\right )} x}} - \frac {\sqrt {c d} e^{\frac {1}{2}} \log \left ({\left | -\sqrt {c d} c d^{2} e^{\frac {1}{2}} - 2 \, {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + a d e + {\left (c d^{2} + a e^{2}\right )} x}\right )} c d e - \sqrt {c d} a e^{\frac {5}{2}} \right |}\right )}{c^{2} d^{2}} \]