38.46 Problem number 796

\[ \int \frac {e^{3 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a^2 x^2}\right )^4} \, dx \]

Optimal antiderivative \[ -\frac {10}{9 a \,c^{4} \left (1-\frac {1}{a x}\right )^{\frac {9}{2}} \left (1+\frac {1}{a x}\right )^{\frac {3}{2}}}-\frac {29}{21 a \,c^{4} \left (1-\frac {1}{a x}\right )^{\frac {7}{2}} \left (1+\frac {1}{a x}\right )^{\frac {3}{2}}}-\frac {208}{105 a \,c^{4} \left (1-\frac {1}{a x}\right )^{\frac {5}{2}} \left (1+\frac {1}{a x}\right )^{\frac {3}{2}}}-\frac {1147}{315 a \,c^{4} \left (1-\frac {1}{a x}\right )^{\frac {3}{2}} \left (1+\frac {1}{a x}\right )^{\frac {3}{2}}}+\frac {x}{c^{4} \left (1-\frac {1}{a x}\right )^{\frac {9}{2}} \left (1+\frac {1}{a x}\right )^{\frac {3}{2}}}+\frac {3 \arctanh \! \left (\sqrt {1-\frac {1}{a x}}\, \sqrt {1+\frac {1}{a x}}\right )}{a \,c^{4}}-\frac {1462}{105 a \,c^{4} \left (1+\frac {1}{a x}\right )^{\frac {3}{2}} \sqrt {1-\frac {1}{a x}}}+\frac {2609 \sqrt {1-\frac {1}{a x}}}{315 a \,c^{4} \left (1+\frac {1}{a x}\right )^{\frac {3}{2}}}+\frac {1664 \sqrt {1-\frac {1}{a x}}}{315 a \,c^{4} \sqrt {1+\frac {1}{a x}}} \]

command

integrate(1/((a*x-1)/(a*x+1))^(3/2)/(c-c/a^2/x^2)^4,x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \frac {1}{20160} \, a {\left (\frac {60480 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c^{4}} - \frac {60480 \, \log \left ({\left | \sqrt {\frac {a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2} c^{4}} - \frac {{\left (a x + 1\right )}^{4} {\left (\frac {450 \, {\left (a x - 1\right )}}{a x + 1} + \frac {2961 \, {\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} + \frac {14700 \, {\left (a x - 1\right )}^{3}}{{\left (a x + 1\right )}^{3}} + \frac {95445 \, {\left (a x - 1\right )}^{4}}{{\left (a x + 1\right )}^{4}} + 35\right )}}{{\left (a x - 1\right )}^{4} a^{2} c^{4} \sqrt {\frac {a x - 1}{a x + 1}}} - \frac {40320 \, \sqrt {\frac {a x - 1}{a x + 1}}}{a^{2} c^{4} {\left (\frac {a x - 1}{a x + 1} - 1\right )}} + \frac {105 \, {\left (\frac {{\left (a x - 1\right )} a^{4} c^{8} \sqrt {\frac {a x - 1}{a x + 1}}}{a x + 1} + 30 \, a^{4} c^{8} \sqrt {\frac {a x - 1}{a x + 1}}\right )}}{a^{6} c^{12}}\right )} \]