38.18 Problem number 312

\[ \int e^{3 \coth ^{-1}(a x)} x \sqrt {c-a c x} \, dx \]

Optimal antiderivative \[ \frac {2 \left (1+\frac {1}{a x}\right )^{\frac {3}{2}} x \sqrt {-a c x +c}}{3 a \sqrt {1-\frac {1}{a x}}}+\frac {2 \left (1+\frac {1}{a x}\right )^{\frac {5}{2}} x^{2} \sqrt {-a c x +c}}{5 \sqrt {1-\frac {1}{a x}}}+\frac {4 \sqrt {1+\frac {1}{a x}}\, \sqrt {-a c x +c}}{a^{2} \sqrt {1-\frac {1}{a x}}}-\frac {4 \arctanh \! \left (\frac {\sqrt {2}\, \sqrt {\frac {1}{x}}}{\sqrt {a}\, \sqrt {1+\frac {1}{a x}}}\right ) \sqrt {2}\, \sqrt {\frac {1}{x}}\, \sqrt {-a c x +c}}{a^{\frac {5}{2}} \sqrt {1-\frac {1}{a x}}} \]

command

integrate(1/((a*x-1)/(a*x+1))^(3/2)*x*(-a*c*x+c)^(1/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -\frac {\frac {60 i \, \sqrt {2} \sqrt {-c} \arctan \left (-i\right ) - 104 \, \sqrt {2} \sqrt {-c}}{a \mathrm {sgn}\left (c\right )} + \frac {2 \, {\left (30 \, \sqrt {2} c^{\frac {5}{2}} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x - c}}{2 \, \sqrt {c}}\right ) - 3 \, {\left (a c x + c\right )}^{2} \sqrt {-a c x - c} + 5 \, {\left (-a c x - c\right )}^{\frac {3}{2}} c - 30 \, \sqrt {-a c x - c} c^{2}\right )}}{a c^{2} \mathrm {sgn}\left (-a c x - c\right )}}{15 \, a} \]