Mathematica solution
SetDirectory[NotebookDirectory[]];
pde = TraditionalForm@
Defer[A D[u[x, y], {x, 2}] + B D[u[x, y], x, y] +
C D[u[x, y], {y, 2}] + "D" D[u[x, y], x] + "E" D[u[x, y], x] +F u[x, y] == G];
elliptic = Column[{"elliptic", "No characteristic curves",
"diffusion process reached equilibrium, steady state temperature distribution",
"Numerically, solved by relaxation methods",
pde, B^2 - 4 A C < 0, Row[{A == 1, ",", C == 1, ",", B == 0}] },
Alignment -> Center];
lev1 = Column[{"F=0",
Style["function that satisfies Laplace is called harmonic", 10]},
Alignment -> Center];
lev2 = "F=k^2";
helmholtz1 = Column[{"G=0", Style["homogeneous", 10],
TraditionalForm@Defer[D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] + k^2 u[x, y] ==
0], "eigenvalue equilibrium"}, Alignment -> Center];
helmholtz2 = Column[{TraditionalForm@Defer[G == g[x, y]],
Style["inhomogeneous", 10],
TraditionalForm@Defer[D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] + k^2 u[x, y] ==
g[x, y]], "steady state oscillation"}, Alignment -> Center];
laplace = Column[{TraditionalForm@Defer[G == 0],
Style["Laplace PDE in 2D", 10],
TraditionalForm@Defer[D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] == 0]},
Alignment -> Center];
poisson = Column[{TraditionalForm@Defer[G == g[x, y]],
Style["Poisson PDE in 2D", 10],
TraditionalForm@Defer[D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] == g[x, y]]},
Alignment -> Center];
r = Framed@LayeredGraphPlot[{"second order PDE's" -> elliptic,
"second order PDE's" -> "parabolic",
"second order PDE's" -> "hyperbolic",
elliptic -> lev1, elliptic -> lev2, lev1 -> laplace,
lev1 -> poisson, lev2 -> helmholtz1, lev2 -> helmholtz2},
VertexLabeling -> True,
VertexRenderingFunction -> (Inset[
Framed[Style[#2, 14], Background -> White,
FrameStyle -> Gray], #1, {Center, Top}] &),
AspectRatio -> .7, DirectedEdges -> False,
PlotRangePadding -> Automatic, ImageSize -> {1000, 800}]
|
|