Home

PDF (letter size)

How system calls work in Linux

Nasser M. Abbasi

May 29, 2000   Compiled on January 30, 2024 at 3:59am

These are notes I wrote while learning how system calls work on a Linux system.

To help show this how system call works, I show flow of a typical system call such as fopen().

fopen() is a function call defined in the C standard library. I use glibc-2.1 as an implementation.

From the UNIX98 standard, fopen() is defined as

#include <stdio.h> 
 
    FILE *fopen(const char *filename, const char *mode);
 
 DESCRIPTION 
 
    The fopen() function opens the file whose pathname is the string pointed 
    to by filename, and associates a stream with it. 
 
    The argument mode points to a string beginning with one of the following sequences: 
 
    r or rb 
        Open file for reading. 
    w or wb 
        Truncate to zero length or create file for writing. 
    a or ab 
        Append; open or create file for writing at end-of-file. 
    r+ or rb+ or r+b 
        Open file for update (reading and writing). 
    w+ or wb+ or w+b 
        Truncate to zero length or create file for update. 
    a+ or ab+ or a+b 
        Append; open or create file for update, writing at end-of-file.
 

Create the following t.c C program to use to test with:

#include <stdio.h> 
 
int main(int argc, char *argv[]) 
{ 
  FILE *f; 
 
  f = fopen("test.txt","r"); 
 
  return 0; 
}
 

To step into fopen(), glibc 2.1 was build in debug and the new build libc.a was linked against instead of the default installed libc on my linux box.

To build glibc, the following are steps performed. A good reference is the glibc2 HOWTO, http://www.linux.ps.pl/doc/other/LDP/HOWTO/Glibc2-HOWTO.html

First, I downloaded the glibc tar file to /usr/src/packages/SOURCES. Extracted It and it created glibc-2.1/ directory. Then copied the crypt tar file into glibc-2.1/ and extracted that. It created crypt/ directory under glibc-2.1/. Next I did

  cd glibc-2.1 
  ./configure --enable-add-ons 
  make 
  make check
 

Next, Installed the library into a direcory called INSTALL_LIB under glibc-2.1.

    make install install_root=/usr/src/packages/SOURCES/glibc-2.1/INSTALL_LIB
 

OK, now glibc-2.1 is compiled and ready to use. Back to the little C program we have above. Lets now compile it and link it to the above library.

 gcc -static -g -I /usr/src/packages/SOURCES/glibc-2.1/INSTALL_LIB/usr/local/include \ 
    -L/usr/src/packages/SOURCES/glibc-2.1/INSTALL_LIB/usr/local/lib t.c
 

Ok, now lets step through it.

$gdb ./a.out 
GNU gdb 4.18 
(gdb) break main 
Breakpoint 1 at 0x80481b6: file t.c, line 7. 
 
(gdb) run 
Starting program: /export/g/nabbasi/data/my_misc_programs/my_c/./a.out 
 
Breakpoint 1, main (argc=1, argv=0xbffff434) at t.c:7 
7         f = fopen("test.txt","r"); 
(gdb) list 
2 
3       int main(int argc, char *argv[]) 
4       { 
5         FILE *f; 
6 
7         f = fopen("test.txt","r"); 
8 
9         return 0; 
10      } 
 
(gdb) disassemble main 
Dump of assembler code for function main: 
0x80481b0 <main>:       push   %ebp 
0x80481b1 <main+1>:     mov    %esp,%ebp 
0x80481b3 <main+3>:     sub    $0x4,%esp 
0x80481b6 <main+6>:     push   $0x8071ba8 
0x80481bb <main+11>:    push   $0x8071baa 
0x80481c0 <main+16>:    call   0x8048710 <_IO_new_fopen> 
0x80481c5 <main+21>:    add    $0x8,%esp 
0x80481c8 <main+24>:    mov    %eax,%eax 
0x80481ca <main+26>:    mov    %eax,0xfffffffc(%ebp) 
0x80481cd <main+29>:    xor    %eax,%eax 
0x80481cf <main+31>:    jmp    0x80481e0 <main+48> 
0x80481d1 <main+33>:    jmp    0x80481e0 <main+48> 
0x80481e0 <main+48>:    mov    %ebp,%esp 
0x80481e2 <main+50>:    pop    %ebp 
0x80481e3 <main+51>:    ret 
End of assembler dump.
 

Humm... what happened to printf call? you will notice, it is now a call to _IO_new_fopen. But I was calling fopen, not _IO_new_fopen?.

Lets step into _IO_new_fopen and see what happened.

(gdb) s 
_IO_new_fopen (filename=0x8071baa "test.txt", mode=0x8071ba8 "r") at iofopen.c:42 
42        } *new_f = (struct locked_FILE *) malloc (sizeof (struct locked_FILE));
 

So, _IO_new_fopen is an entry in iofopen.c. Where is this file?

cd glibc-2.1 
find . -name iofopen.c
 

will show it as glibc-2.1/libio/iofopen.c Lets look at it

#include "libioP.h" 
#ifdef __STDC__ 
#include <stdlib.h> 
#endif 
_IO_FILE * 
_IO_new_fopen (filename, mode) 
     const char *filename; 
     const char *mode; 
{ 
  struct locked_FILE 
  { 
    struct _IO_FILE_plus fp; 
#ifdef _IO_MTSAFE_IO 
    _IO_lock_t lock; 
#endif 
  } *new_f = (struct locked_FILE *) malloc (sizeof (struct locked_FILE)); 
  if (new_f == NULL) 
    return NULL; 
#ifdef _IO_MTSAFE_IO 
  new_f->fp.file._lock = &new_f->lock; 
#endif 
  _IO_init (&new_f->fp.file, 0); 
  _IO_JUMPS (&new_f->fp) = &_IO_file_jumps; 
  _IO_file_init (&new_f->fp.file); 
#if  !_IO_UNIFIED_JUMPTABLES 
  new_f->fp.vtable = NULL; 
#endif 
  if (_IO_file_fopen (&new_f->fp.file, filename, mode, 1) != NULL) 
    return (_IO_FILE *) &new_f->fp; 
  _IO_un_link (&new_f->fp.file); 
  free (new_f); 
  return NULL; 
} 
#if defined PIC && DO_VERSIONING 
strong_alias (_IO_new_fopen, __new_fopen) 
default_symbol_version (_IO_new_fopen, _IO_fopen, GLIBC_2.1); 
default_symbol_version (__new_fopen, fopen, GLIBC_2.1); 
#else 
# ifdef weak_alias 
weak_alias (_IO_new_fopen, _IO_fopen) 
weak_alias (_IO_new_fopen, fopen) 
# endif 
#endif
 

Notice at the end what it says, it says weak_alias (_IO_new_fopen, fopen). This tells gcc that _IO_new_fopen is an alias to fopen. (weak alias). Let me make sure. Looking at libc.a now

cd /usr/src/packages/SOURCES/glibc-2.1/INSTALL_LIB/usr/local/lib 
nm libc.a 
... 
iofopen.o: 
         U _IO_file_fopen 
         U _IO_file_init 
         U _IO_file_jumps 
00000000 W _IO_fopen 
         U _IO_init 
00000000 T _IO_new_fopen 
         U _IO_un_link 
         U __pthread_atfork 
         U __pthread_getspecific 
         U __pthread_initialize 
         U __pthread_key_create 
         U __pthread_mutex_destroy 
         U __pthread_mutex_init 
         U __pthread_mutex_lock 
         U __pthread_mutex_trylock 
         U __pthread_mutex_unlock 
         U __pthread_mutexattr_destroy 
         U __pthread_mutexattr_init 
         U __pthread_mutexattr_settype 
         U __pthread_once 
         U __pthread_setspecific 
         U _pthread_cleanup_pop_restore 
         U _pthread_cleanup_push_defer 
00000000 W fopen 
         U free 
         U malloc 
...
 

Notice fopen has W next to it, meaning a Weak symbol. So, the linker when it sees a call to fopen will bind the call to _IO_new_fopen.

It is just a different name for fopen. This way, library can create different implementations for calls without the user program having to change.

Ok, now, lets continue to see where we will end up. back to gdb.

(gdb) disassemble fopen 
Dump of assembler code for function _IO_new_fopen: 
0x8048710 <_IO_new_fopen>:      push   %ebp 
0x8048711 <_IO_new_fopen+1>:    mov    %esp,%ebp 
0x8048713 <_IO_new_fopen+3>:    push   %ebx 
0x8048714 <_IO_new_fopen+4>:    push   $0xb0 
0x8048719 <_IO_new_fopen+9>:    call   0x804b020 <__libc_malloc> 
0x804871e <_IO_new_fopen+14>:   mov    %eax,%ebx 
0x8048720 <_IO_new_fopen+16>:   add    $0x4,%esp 
0x8048723 <_IO_new_fopen+19>:   test   %ebx,%ebx 
0x8048725 <_IO_new_fopen+21>:   jne    0x8048730 <_IO_new_fopen+32> 
0x8048727 <_IO_new_fopen+23>:   xor    %eax,%eax 
0x8048729 <_IO_new_fopen+25>:   jmp    0x8048782 <_IO_new_fopen+114> 
0x804872b <_IO_new_fopen+27>:   nop 
0x804872c <_IO_new_fopen+28>:   lea    0x0(%esi,1),%esi 
0x8048730 <_IO_new_fopen+32>:   lea    0x98(%ebx),%edx 
0x8048736 <_IO_new_fopen+38>:   mov    %edx,0x48(%ebx) 
0x8048739 <_IO_new_fopen+41>:   push   $0x0 
0x804873b <_IO_new_fopen+43>:   push   %ebx 
0x804873c <_IO_new_fopen+44>:   call   0x804a030 <_IO_init> 
0x8048741 <_IO_new_fopen+49>:   movl   $0x807a360,0x94(%ebx) 
0x804874b <_IO_new_fopen+59>:   push   %ebx 
0x804874c <_IO_new_fopen+60>:   call   0x80487a0 <_IO_new_file_init> 
0x8048751 <_IO_new_fopen+65>:   push   $0x1 
0x8048753 <_IO_new_fopen+67>:   mov    0xc(%ebp),%eax 
0x8048756 <_IO_new_fopen+70>:   push   %eax 
0x8048757 <_IO_new_fopen+71>:   mov    0x8(%ebp),%eax 
0x804875a <_IO_new_fopen+74>:   push   %eax 
0x804875b <_IO_new_fopen+75>:   push   %ebx 
0x804875c <_IO_new_fopen+76>:   call   0x80488e0 <_IO_new_file_fopen> 
0x8048761 <_IO_new_fopen+81>:   add    $0x1c,%esp 
0x8048764 <_IO_new_fopen+84>:   test   %eax,%eax 
0x8048766 <_IO_new_fopen+86>:   jne    0x8048780 <_IO_new_fopen+112> 
0x8048768 <_IO_new_fopen+88>:   push   %ebx 
0x8048769 <_IO_new_fopen+89>:   call   0x80497a0 <_IO_un_link> 
0x804876e <_IO_new_fopen+94>:   push   %ebx 
0x804876f <_IO_new_fopen+95>:   call   0x804b9f0 <__libc_free> 
0x8048774 <_IO_new_fopen+100>:  xor    %eax,%eax 
0x8048776 <_IO_new_fopen+102>:  jmp    0x8048782 <_IO_new_fopen+114> 
0x8048778 <_IO_new_fopen+104>:  nop 
0x8048779 <_IO_new_fopen+105>:  lea    0x0(%esi,1),%esi 
0x8048780 <_IO_new_fopen+112>:  mov    %ebx,%eax 
0x8048782 <_IO_new_fopen+114>:  mov    0xfffffffc(%ebp),%ebx 
0x8048785 <_IO_new_fopen+117>:  mov    %ebp,%esp 
0x8048787 <_IO_new_fopen+119>:  pop    %ebp 
0x8048788 <_IO_new_fopen+120>:  ret 
End of assembler dump.
 

The call I am interested in is _IO_new_file_fopen. The earlier calls were calls that create and initialize data structures. I am interested in finding the call that will result in interrupt 0x80. So, lets step to _IO_new_file_fopen.

(gdb) break _IO_new_file_fopen 
Breakpoint 3 at 0x80488ec: file fileops.c, line 204. 
(gdb) continue 
Continuing. 
 
Breakpoint 3, _IO_new_file_fopen (fp=0x807c838, filename=0x8071baa "test.txt", mode=0x8071ba8 "r", is32not64=1) at fileops.c:204 
204       int oflags = 0, omode; 
(gdb)
 

The file fileops.c is located in glibc-2.1/libio/, lets look at the source code for _IO_file_fopen() in that file:

_IO_FILE * 
_IO_new_file_fopen (fp, filename, mode, is32not64) 
     _IO_FILE *fp; 
     const char *filename; 
     const char *mode; 
     int is32not64; 
{ 
  int oflags = 0, omode; 
  int read_write; 
  int oprot = 0666; 
  int i; 
  if (_IO_file_is_open (fp)) 
    return 0; 
  switch (*mode) 
    { 
    case 'r': 
      omode = O_RDONLY; 
      read_write = _IO_NO_WRITES; 
      break; 
    case 'w': 
      omode = O_WRONLY; 
      oflags = O_CREAT|O_TRUNC; 
      read_write = _IO_NO_READS; 
      break; 
    case 'a': 
      omode = O_WRONLY; 
      oflags = O_CREAT|O_APPEND; 
      read_write = _IO_NO_READS|_IO_IS_APPENDING; 
      break; 
    default: 
      __set_errno (EINVAL); 
      return NULL; 
    } 
  for (i = 1; i < 4; ++i) 
    { 
      switch (*++mode) 
              { 
              case '\0': 
                break; 
              case '+': 
                omode = O_RDWR; 
                read_write &= _IO_IS_APPENDING; 
                continue; 
              case 'x': 
                oflags |= O_EXCL; 
                continue; 
              case 'b': 
              default: 
                /* Ignore.  */ 
                continue; 
              } 
      break; 
    } 
 
  return _IO_file_open (fp, filename, omode|oflags, oprot, read_write,  ----> step here 
                                          is32not64); 
}
 

Let us assume the file is not allready open, the next call will be _IO_file_open()

Setting a break point there. But notice, looking at source code in fileops.c, the above call to _IO_file_open is inlined (for performance?)

#if defined __GNUC__ && __GNUC__ >= 2 
__inline__ 
#endif 
_IO_FILE * 
_IO_file_open (fp, filename, posix_mode, prot, read_write, is32not64) 
     _IO_FILE *fp; 
     const char *filename; 
     int posix_mode; 
     int prot; 
     int read_write; 
     int is32not64; 
{ 
  int fdesc; 
#ifdef _G_OPEN64 
  fdesc = (is32not64 
                 ? open (filename, posix_mode, prot) 
                 : _G_OPEN64 (filename, posix_mode, prot)); 
#else 
  fdesc = open (filename, posix_mode, prot); 
#endif 
  if (fdesc < 0) 
    return NULL; 
  fp->_fileno = fdesc; 
  _IO_mask_flags (fp, read_write,_IO_NO_READS+_IO_NO_WRITES+_IO_IS_APPENDING); 
  if (read_write & _IO_IS_APPENDING) 
    if (_IO_SEEKOFF (fp, (_IO_off64_t)0, _IO_seek_end, _IOS_INPUT|_IOS_OUTPUT) 
              == _IO_pos_BAD && errno != ESPIPE) 
      return NULL; 
  _IO_link_in (fp); 
  return fp; 
}
 

Setting a break point at the call to open above.

(gdb) where 
#0  _IO_new_file_fopen (fp=0x807c838, filename=0x8071baa "test.txt", mode=0x8071ba8 "r", is32not64=1) at fileops.c:179 
#1  0x8048761 in _IO_new_fopen (filename=0x8071baa "test.txt", mode=0x8071ba8 "r") at iofopen.c:55 
#2  0x80481c5 in main (argc=1, argv=0xbffff434) at t.c:7 
(gdb) list 
174          int read_write; 
175          int is32not64; 
176     { 
177       int fdesc; 
178     #ifdef _G_OPEN64 
179       fdesc = (is32not64 
180                ? open (filename, posix_mode, prot)   -------> This is call we need 
181                : _G_OPEN64 (filename, posix_mode, prot)); 
182     #else 
183       fdesc = open (filename, posix_mode, prot); 
(gdb) break open 
Breakpoint 2 at 0x804df80 
(gdb)
 

Since _IO_file_fopen is inlined inside _IO_new_file_fopen, we can look at the assembler call to open above by disassembly of _IO_new_file_fopen().

I’ll show only the part where the call to open is made

(gdb) disassemble _IO_new_file_fopen 
Dump of assembler code for function _IO_new_file_fopen: 
... 
0x80489e4 <_IO_new_file_fopen+260>:     push   $0x1b6 
0x80489e9 <_IO_new_file_fopen+265>:     push   %eax 
0x80489ea <_IO_new_file_fopen+266>:     mov    0xc(%ebp),%edi 
0x80489ed <_IO_new_file_fopen+269>:     push   %edi 
0x80489ee <_IO_new_file_fopen+270>:     call   0x804df80 <__libc_open>  ----> this is open 
...
 

Ok, back to gdb, setting a breakpoint at open and stepping into it

(gdb) where 
#0  _IO_new_file_fopen (fp=0x807c838, filename=0x8071baa "test.txt", mode=0x8071ba8 "r", is32not64=1) at fileops.c:179 
#1  0x8048761 in _IO_new_fopen (filename=0x8071baa "test.txt", mode=0x8071ba8 "r") at iofopen.c:55 
#2  0x80481c5 in main (argc=1, argv=0xbffff434) at t.c:7 
 
Breakpoint 2, 0x804df80 in __libc_open () 
(gdb) disassemble 
Dump of assembler code for function __libc_open: 
0x804df80 <__libc_open>:        push   %ebx 
0x804df81 <__libc_open+1>:      mov    0x10(%esp,1),%edx 
0x804df85 <__libc_open+5>:      mov    0xc(%esp,1),%ecx 
0x804df89 <__libc_open+9>:      mov    0x8(%esp,1),%ebx 
0x804df8d <__libc_open+13>:     mov    $0x5,%eax 
0x804df92 <__libc_open+18>:     int    $0x80    -----> to kernel mode. 
0x804df94 <__libc_open+20>:     pop    %ebx 
0x804df95 <__libc_open+21>:     cmp    $0xfffff001,%eax 
0x804df9a <__libc_open+26>:     jae    0x804e450 <__syscall_error> 
0x804dfa0 <__libc_open+32>:     ret 
End of assembler dump. 
(gdb)
 

We are finally there. The open() call being made from _IO_file_open(), is translated to __libc_open() and __libc_open() will issue the interupt 0x80, which will turn the processor to run in kernel more, and the interrupt handler will locate the kernel system call to process open().

But before jumping into kernel mode, lets see how did the call to open() become a call to __libc_open() It turns out that when building glibc-2.1, there is a file called glibc-2.1/sysdeps/unix/syscalls.list

This file is used by the glibc build system to generate the wrapper for open() and call it __libc_open.

>cat glibc-2.1/sysdeps/unix/syscalls.list 
# File name     Caller  Syscall name    # args  Strong name     Weak names 
 
access          -       access          2       __access        access 
acct            -       acct            1       acct 
chdir           -       chdir           1       __chdir         chdir 
chmod           -       chmod           2       __chmod         chmod 
chown           -       chown           3       __chown         chown 
chroot          -       chroot          1       chroot 
close           -       close           1       __libc_close    __close close 
dup             -       dup             1       __dup           dup 
dup2            -       dup2            2       __dup2          dup2 
fchdir          -       fchdir          1       __fchdir        fchdir 
fcntl           -       fcntl           3       __libc_fcntl    __fcntl fcntl 
fstatfs         -       fstatfs         2       __fstatfs       fstatfs 
fsync           -       fsync           1       __libc_fsync    fsync 
getdomain       -       getdomainname   2       getdomainname 
getgid          -       getgid          0       __getgid        getgid 
getgroups       -       getgroups       2       __getgroups     getgroups 
getitimer       -       getitimer       2       __getitimer     getitimer 
getpid          -       getpid          0       __getpid        getpid 
getpriority     -       getpriority     2       getpriority 
getrlimit       -       getrlimit       2       __getrlimit     getrlimit 
getuid          -       getuid          0       __getuid        getuid 
ioctl           -       ioctl           3       __ioctl         ioctl 
kill            -       kill            2       __kill          kill 
link            -       link            2       __link          link 
lseek           -       lseek           3       __libc_lseek    __lseek lseek 
mkdir           -       mkdir           2       __mkdir         mkdir 
open            -       open            3       __libc_open     __open open 
profil          -       profil          4       profil 
ptrace          -       ptrace          4       ptrace 
read            -       read            3       __libc_read     __read read 
readlink        -       readlink        3       __readlink      readlink 
readv           -       readv           3       __readv         readv 
reboot          -       reboot          1       reboot 
rename          -       rename          2       rename 
rmdir           -       rmdir           1       __rmdir         rmdir 
select          -       select          5       __select        select 
setdomain       -       setdomainname   2       setdomainname 
setegid         -       setegid         1       __setegid       setegid 
seteuid         -       seteuid         1       __seteuid       seteuid 
setgid          -       setgid          1       __setgid        setgid 
setgroups       -       setgroups       2       setgroups 
setitimer       -       setitimer       3       __setitimer     setitimer 
setpriority     -       setpriority     3       setpriority 
setrlimit       -       setrlimit       2       setrlimit 
setsid          -       setsid          0       __setsid        setsid 
settimeofday    -       settimeofday    2       __settimeofday  settimeofday 
setuid          -       setuid          1       __setuid        setuid 
sigsuspend      -       sigsuspend      1       sigsuspend 
sstk            -       sstk            1       sstk 
statfs          -       statfs          2       __statfs        statfs 
swapoff         -       swapoff         1       swapoff 
swapon          -       swapon          1       swapon 
symlink         -       symlink         2       __symlink       symlink 
sync            -       sync            0       sync 
sys_fstat       fxstat  fstat           2       __syscall_fstat 
sys_mknod       xmknod  mknod           3       __syscall_mknod 
sys_stat        xstat   stat            2       __syscall_stat 
umask           -       umask           1       __umask         umask 
uname           -       uname           1       uname 
unlink          -       unlink          1       __unlink        unlink 
utimes          -       utimes          2       __utimes        utimes 
write           -       write           3       __libc_write    __write write 
writev          -       writev          3       __writev        writev
 

I extraced open.o from libc.a and dumped the open.o

 
use ar -x libc.a, in some temp dir. 
 
>objdump --show-raw-insn open.o 
open.o:     file format elf32-i386 
>objdump  --disassemble open.o 
open.o:     file format elf32-i386 
Disassembly of section .text: 
00000000 <__libc_open>: 
   0:   53                      pushl  %ebx 
   1:   8b 54 24 10             movl   0x10(%esp,1),%edx 
   5:   8b 4c 24 0c             movl   0xc(%esp,1),%ecx 
   9:   8b 5c 24 08             movl   0x8(%esp,1),%ebx 
   d:   b8 05 00 00 00          movl   $0x5,%eax 
  12:   cd 80                   int    $0x80 
  14:   5b                      popl   %ebx 
  15:   3d 01 f0 ff ff          cmpl   $0xfffff001,%eax 
  1a:   0f 83 fc ff ff ff       jae    1c <__libc_open+0x1c> 
  20:   c3                      ret
 

How does the glibc build system generate the wrapper call to open()? It happens when the glibc-2.1/io directory is build. This is the output where it happens:

make[1]: Entering directory `/export/g/src/packages/SOURCES/glibc-2.1/io' 
(echo '#include <sysdep.h>'; \ 
 echo 'PSEUDO (__libc_open, open, 3)'; \ 
 echo ' ret'; \ 
 echo 'PSEUDO_END(__libc_open)'; \ 
 echo 'weak_alias (__libc_open, __open)'; \ 
 echo 'weak_alias (__libc_open, open)'; \ 
) | gcc -c  -I../include -I.  -I.. -I../libio  -I../sysdeps/i386/elf 
-I../crypt/sysdeps/unix -I../linuxthreads/ 
sysdeps/unix/sysv/linux -I../linuxthreads/sysdeps/pthread 
-I../linuxthreads/sysdeps/unix/sysv -I../linuxthreads 
/sysdeps/unix -I../linuxthreads/sysdeps/i386/i686 -I../linuxthreads/sysdeps/i386 
-I../sysdeps/unix/sysv/linux/i 
386/i686 -I../sysdeps/unix/sysv/linux/i386 -I../sysdeps/unix/sysv/linux 
-I../sysdeps/gnu -I../sysdeps/unix/comm 
on -I../sysdeps/unix/mman -I../sysdeps/unix/inet -I../sysdeps/unix/sysv/i386 
-I../sysdeps/unix/sysv -I../sysdeps/unix/i386 -I../sysdeps/unix -I../sysdeps/posix 
-I../sysdeps/i386/i686 -I../sysdeps/i386/i486 -I../sysdeps/lib 
m-i387/i686 -I../sysdeps/i386/fpu -I../sysdeps/libm-i387 -I../sysdeps/i386 
-I../sysdeps/wordsize-32 -I../sysdeps/ieee754 -I../sysdeps/libm-ieee754 
-I../sysdeps/generic/elf -I../sysdeps/generic   -D_LIBC_REENTRANT 
-include ../include/libc-symbols.h     -DASSEMBLER  -DGAS_SYNTAX  -x assembler-with-cpp 
-o open.o -echo 'io/utime.o io/mkfifo.o io/stat.o io/fstat.o io/lstat.o 
io/mknod.o io/stat64.o io/fstat64.o io/lstat64.o io/xstat.o io/fxstat.o 
io/lxstat.o io/xmknod.o io/xstat64.o io/fxstat64.o io/lxstat64.o io/statfs.o io/fstatfs.o 
 io/statfs64.o io/fstatfs64.o io/statvfs.o io/fstatvfs.o io/statvfs64.o 
io/fstatvfs64.o io/umask.o io/chmod.o io/fchmod.o io/mkdir.o io/open.o 
io/open64.o io/close.o io/read.o io/write.o io/lseek.o io/lseek64.o io/access.o 
 io/euidaccess.o io/fcntl.o io/flock.o io/lockf.o io/lockf64.o io/dup.o io/dup2.o 
io/pipe.o io/creat.o io/creat64.o io/chdir.o io/fchdir.o io/getcwd.o 
io/getwd.o io/getdirname.o io/chown.o io/fchown.o io/lchown.o io/ttyname.o 
io/ttyname_r.o io/isatty.o io/link.o io/symlink.o io/readlink.o io/unlink.o 
io/rmdir.o io/ftw.o io/ftw64.o io/fts.o io/poll.o' > stamp.oT 
mv -f stamp.oT stamp.o
 

I do not understand the above, as I do not see where is the C source code for the call wrapper. Maybe one day I will understand the above.

But as a result of the above, we get open.o in libc.a, with the __libc_open entry there as an alias for ’open’. OK, now let me look more at the code generated in __libc_open.

Here it is again

>objdump  --disassemble open.o 
open.o:     file format elf32-i386 
Disassembly of section .text: 
00000000 <__libc_open>: 
   0:   53                      pushl  %ebx 
   1:   8b 54 24 10             movl   0x10(%esp,1),%edx 
   5:   8b 4c 24 0c             movl   0xc(%esp,1),%ecx 
   9:   8b 5c 24 08             movl   0x8(%esp,1),%ebx 
   d:   b8 05 00 00 00          movl   $0x5,%eax 
  12:   cd 80                   int    $0x80 
  14:   5b                      popl   %ebx 
  15:   3d 01 f0 ff ff          cmpl   $0xfffff001,%eax 
  1a:   0f 83 fc ff ff ff       jae    1c <__libc_open+0x1c> 
  20:   c3                      ret
 

Notice that open() takes 3 arguments

  open (filename, posix_mode, prot)
 

Notice the asembler shows using registers eds, ecx, and ebx to pass the data, then it moves 5 to eax. What is 5? This got to be the number that kernel uses to identify which system call it is.

Actually this will end up as an index used by the interrupt handler to locate the system call. Lets look around.

cd glibc-2.1 
>find . -name '*.h' | grep syscal 
./include/syscall.h 
./misc/syscall.h 
./misc/syscall-list.h 
./sysdeps/generic/sys/syscall.h 
./sysdeps/mach/sys/syscall.h 
./sysdeps/unix/sysv/linux/mips/sys/syscall.h 
./sysdeps/unix/sysv/linux/sys/syscall.h 
./sysdeps/unix/sysv/sco3.2.4/sys/syscall.h 
./sysdeps/unix/sysv/sysv4/solaris2/sys/syscall.h 
./INSTALL_LIB/usr/local/include/sys/syscall.h 
./INSTALL_LIB/usr/local/include/bits/syscall.h 
./INSTALL_LIB/usr/local/include/syscall.h 
 
>more ./include/syscall.h 
#include <misc/syscall.h> 
 
>more ./misc/syscall.h 
#include <sys/syscall.h> 
>
 

Ok, getting closer, lets look at /usr/include/sys/syscall.h

>more /usr/include/sys/syscall.h

/* Copyright (C) 1995, 1996, 1997 Free Software Foundation, Inc. 
   This file is part of the GNU C Library. 
 
   The GNU C Library is free software; you can redistribute it and/or 
   modify it under the terms of the GNU Library General Public License as 
   published by the Free Software Foundation; either version 2 of the 
   License, or (at your option) any later version. 
 
   The GNU C Library is distributed in the hope that it will be useful, 
   but WITHOUT ANY WARRANTY; without even the implied warranty of 
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
   Library General Public License for more details. 
 
   You should have received a copy of the GNU Library General Public 
   License along with the GNU C Library; see the file COPYING.LIB.  If not, 
   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, 
   Boston, MA 02111-1307, USA.  */ 
 
#ifndef _SYSCALL_H 
#define _SYSCALL_H      1 
 
/* This file should list the numbers of the system the system knows. 
   But instead of duplicating this we use the information available 
   from the kernel sources.  */ 
#include <asm/unistd.h> 
 
#ifndef _LIBC 
/* The Linux kernel header file defines macros `__NR_<name>', but some 
   programs expect the traditional form `SYS_<name>'.  So in building libc 
   we scan the kernel's list and produce <bits/syscall.h> with macros for 
   all the `SYS_' names.  */ 
# include <bits/syscall.h> 
#endif 
 
#endif
 

Ok, I am getting really close now.

>more /usr/include/asm/unistd.h

#ifndef _ASM_I386_UNISTD_H_ 
#define _ASM_I386_UNISTD_H_ 
 
/* 
 * This file contains the system call numbers. 
 */ 
 
#define __NR_exit                 1 
#define __NR_fork                 2 
#define __NR_read                 3 
#define __NR_write                4 
#define __NR_open                 5  /*------> HERE IT IS !!!*/ 
....
 

yahoo! found it. So, 5 is moved to register eax, and interrupt 0x80 is invoked.

When interrupt returns, system call is complete. It does not seem that the syscall macros defined in /usr/inlcude/asm/unistd.h are used in glibc?

OK, so far so good, now I’ll switch hats, and jump into kernel mode to see how the open() call is processed. I need to find the code for that processes the interrupt 0x80.

The interrupt routine that is bound to interrupt 0x80 is found in

/usr/src/linux/arch/i386/kernel/entry.S

the entry point is called ENTRY(system_call).

Lets look at the code for the interrupt routine:

ENTRY(system_call) 
        pushl %eax                      # save orig_eax 
        SAVE_ALL 
        GET_CURRENT(%ebx) 
        cmpl $(NR_syscalls),%eax    -----------> Notice, eax is where the system call number is saved. 
        jae badsys 
        testb $0x20,flags(%ebx)         # PF_TRACESYS 
        jne tracesys 
        call *SYMBOL_NAME(sys_call_table)(,%eax,4)  -----> Here we index into the sys_call_table using the above number. 
        movl %eax,EAX(%esp)             # save the return value 
ENTRY(ret_from_sys_call) 
#ifdef __SMP__ 
        movl processor(%ebx),%eax 
        shll $5,%eax 
        movl SYMBOL_NAME(softirq_state)(,%eax),%ecx 
        testl SYMBOL_NAME(softirq_state)+4(,%eax),%ecx 
#else 
        movl SYMBOL_NAME(softirq_state),%ecx 
        testl SYMBOL_NAME(softirq_state)+4,%ecx 
#endif 
        jne   handle_softirq 
         
ret_with_reschedule: 
        cmpl $0,need_resched(%ebx) 
        jne reschedule 
        cmpl $0,sigpending(%ebx) 
        jne signal_return 
restore_all: 
        RESTORE_ALL 
 
        ALIGN 
signal_return: 
        sti                             # we can get here from an interrupt handler 
        testl $(VM_MASK),EFLAGS(%esp) 
        movl %esp,%eax 
        jne v86_signal_return 
        xorl %edx,%edx 
        call SYMBOL_NAME(do_signal) 
        jmp restore_all 
 
        ALIGN 
v86_signal_return: 
        call SYMBOL_NAME(save_v86_state) 
        movl %eax,%esp 
        xorl %edx,%edx 
        call SYMBOL_NAME(do_signal) 
        jmp restore_all 
 
        ALIGN 
tracesys: 
        movl $-ENOSYS,EAX(%esp) 
        call SYMBOL_NAME(syscall_trace) 
        movl ORIG_EAX(%esp),%eax 
        cmpl $(NR_syscalls),%eax 
        jae tracesys_exit 
        call *SYMBOL_NAME(sys_call_table)(,%eax,4) 
        movl %eax,EAX(%esp)             # save the return value 
tracesys_exit: 
        call SYMBOL_NAME(syscall_trace) 
        jmp ret_from_sys_call 
badsys: 
        movl $-ENOSYS,EAX(%esp) 
        jmp ret_from_sys_call 
 
        ALIGN 
ret_from_exception: 
#ifdef __SMP__ 
        GET_CURRENT(%ebx) 
        movl processor(%ebx),%eax 
        shll $5,%eax 
        movl SYMBOL_NAME(softirq_state)(,%eax),%ecx 
        testl SYMBOL_NAME(softirq_state)+4(,%eax),%ecx 
#else 
        movl SYMBOL_NAME(softirq_state),%ecx 
        testl SYMBOL_NAME(softirq_state)+4,%ecx 
#endif 
        jne   handle_softirq 
 
ENTRY(ret_from_intr) 
        GET_CURRENT(%ebx) 
        movl EFLAGS(%esp),%eax          # mix EFLAGS and CS 
        movb CS(%esp),%al 
        testl $(VM_MASK | 3),%eax       # return to VM86 mode or non-supervisor? 
        jne ret_with_reschedule 
        jmp restore_all 
 
        ALIGN 
handle_softirq: 
        call SYMBOL_NAME(do_softirq) 
        jmp ret_from_intr 
         
        ALIGN 
reschedule: 
        call SYMBOL_NAME(schedule)    # test 
        jmp ret_from_sys_call 
 
ENTRY(divide_error) 
        pushl $0                # no error code 
        pushl $ SYMBOL_NAME(do_divide_error) 
        ALIGN 
error_code: 
        pushl %ds 
        pushl %eax 
        xorl %eax,%eax 
        pushl %ebp 
        pushl %edi 
        pushl %esi 
        pushl %edx 
        decl %eax                       # eax = -1 
        pushl %ecx 
        pushl %ebx 
        cld 
        movl %es,%ecx 
        xchgl %eax, ORIG_EAX(%esp)      # orig_eax (get the error code. ) 
        movl %esp,%edx 
        xchgl %ecx, ES(%esp)            # get the address and save es. 
        pushl %eax                      # push the error code 
        pushl %edx 
        movl $(__KERNEL_DS),%edx 
        movl %edx,%ds 
        movl %edx,%es 
        GET_CURRENT(%ebx) 
        call *%ecx 
        addl $8,%esp 
        jmp ret_from_exception
 

The sys_call_table itself is located in .data segment in entry.S, this is the start of the table

 
.data 
ENTRY(sys_call_table) 
        .long SYMBOL_NAME(sys_ni_syscall)       /* 0  -  old "setup()" system call*/ 
        .long SYMBOL_NAME(sys_exit) 
        .long SYMBOL_NAME(sys_fork) 
        .long SYMBOL_NAME(sys_read) 
        .long SYMBOL_NAME(sys_write) 
        .long SYMBOL_NAME(sys_open)             /* 5 */ 
        .long SYMBOL_NAME(sys_mincore) 
        .long SYMBOL_NAME(sys_madvise) 
 
..... 
 
        /* 
         * NOTE!! This doesn't have to be exact - we just have 
         * to make sure we have _enough_ of the "sys_ni_syscall" 
         * entries. Don't panic if you notice that this hasn't 
         * been shrunk every time we add a new system call. 
         */ 
        .rept NR_syscalls-219 
                .long SYMBOL_NAME(sys_ni_syscall) 
        .endr
 

Ok, lets follow the system call. I see from the dispatch table above, that the open() call is implemented in kernel using sys_open.

Where is sys_open() ? All the sys calls related to IO are locatd in linux/fs/. Looking at linux/fs/open.c, this is the sys_open function.

asmlinkage long sys_open(const char * filename, int flags, int mode) 
{ 
              char * tmp; 
              int fd, error; 
 
#if BITS_PER_LONG != 32 
              flags |= O_LARGEFILE; 
#endif 
              tmp = getname(filename); 
              fd = PTR_ERR(tmp); 
              if (!IS_ERR(tmp)) { 
                            fd = get_unused_fd(); 
                            if (fd >= 0) { 
                                          struct file * f; 
                                          lock_kernel(); 
                                          f = filp_open(tmp, flags, mode); 
                                          unlock_kernel(); 
                                          error = PTR_ERR(f); 
                                          if (IS_ERR(f)) 
                                                        goto out_error; 
                                          fd_install(fd, f); 
                            } 
out: 
                            putname(tmp); 
              } 
              return fd; 
 
out_error: 
              put_unused_fd(fd); 
              fd = error; 
              goto out; 
} 
\begin{Cinline} 
% 
The function \verb|filp_open()| is in the same above file as \verb|sys_open()|. 
Here is the function 
% 
 
\begin{Cinline} 
struct file *filp_open(const char * filename, int flags, int mode) 
{ 
              int namei_flags, error; 
              struct nameidata nd; 
 
              namei_flags = flags; 
              if ((namei_flags+1) & O_ACCMODE) 
                            namei_flags++; 
              if (namei_flags & O_TRUNC) 
                            namei_flags |= 2; 
 
              error = open_namei(filename, namei_flags, mode, &nd); 
              if (!error) 
                            return dentry_open(nd.dentry, nd.mnt, flags); 
 
              return ERR_PTR(error); 
}
 

Notice the call to open_namei(), this is the interface to the virtual file system. calls into VFS are named _namei (verify?).

open_namei() is defined in linux/fs/namei.c.

After some access checking, and pathname checking, and possibly allocating an inode, a kernel internal struct file is allocated for the file. The file struct contains a pointer to file_operations struct, which contains the address of functions to process operations on this filesystem, that must have been initialized when the file system was mounted.

struct file { 
456         struct list_head        f_list; 
457         struct dentry           *f_dentry; 
458         struct vfsmount         *f_vfsmnt; 
459         struct file_operations  *f_op; 
460         atomic_t                f_count; 
461         unsigned int            f_flags; 
462         mode_t                  f_mode; 
463         loff_t                  f_pos; 
464         unsigned long           f_reada, f_ramax, f_raend, f_ralen, f_rawin; 
465         struct fown_struct      f_owner; 
466         unsigned int            f_uid, f_gid; 
467         int                     f_error; 
468 
469         unsigned long           f_version; 
470 
471         /* needed for tty driver, and maybe others */ 
472         void                    *private_data; 
473 }; 
 
\begin{Cinline}% 
 
and 
 
\begin{Cinline} 
struct file_operations { 
693         loff_t (*llseek) (struct file *, loff_t, int); 
694         ssize_t (*read) (struct file *, char *, size_t, loff_t *); 
695         ssize_t (*write) (struct file *, const char *, size_t, loff_t *); 
696         int (*readdir) (struct file *, void *, filldir_t); 
697         unsigned int (*poll) (struct file *, struct poll_table_struct *); 
698         int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long); 
699         int (*mmap) (struct file *, struct vm_area_struct *); 
700         int (*open) (struct inode *, struct file *); 
701         int (*flush) (struct file *); 
702         int (*release) (struct inode *, struct file *); 
703         int (*fsync) (struct file *, struct dentry *); 
704         int (*fasync) (int, struct file *, int); 
705         int (*lock) (struct file *, int, struct file_lock *); 
706         ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *); 
707         ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *); 
708 };
 

Ok, time to go sleep now.