Given second order ode \(\frac {d^{2}y}{dx^{2}}=\omega \left ( x,y,y^{\prime }\right ) \) where \(\bar {y}\equiv \bar {y}\left ( x,y,y^{\prime }\right ) \) and \(\bar {x}\equiv \bar {x}\left ( x,y,y^{\prime }\right ) \) then \(\frac {d^{2}\bar {y}}{d\bar {x}^{2}}\) is given by\begin {align*} \frac {d^{2}\bar {y}}{d\bar {x}^{2}} & =\frac {D_{x}\frac {d\bar {y}}{d\bar {x}}}{D_{x}\bar {x}}\\ & =\frac {\bar {y}_{x}^{\prime }+\bar {y}_{y}^{\prime }y^{\prime }+\bar {y}_{y^{\prime }}^{\prime }y^{\prime \prime }}{\bar {x}_{x}^{\prime }+\bar {x}_{y}^{\prime }y^{\prime }} \end {align*}
To simplify notation we used \(\bar {y}^{\prime }\) for \(\frac {d\bar {y}}{d\bar {x}}\) above. The above simplifies to\[ \frac {d^{2}\bar {y}}{d\bar {x}^{2}}=\frac {\bar {y}_{x}^{\prime }+\bar {y}_{y}^{\prime }y^{\prime }+\bar {y}_{y^{\prime }}^{\prime }\omega }{\bar {x}_{x}^{\prime }+\bar {x}_{y}^{\prime }y^{\prime }}\] Keeping in mind that \(\left ( \circ \right ) _{x}\) or \(\left ( \circ \right ) _{y}\) mean partial derivative.
Given third order ode \(\frac {d^{3}y}{dx^{3}}=\omega \left ( x,y,y^{\prime },y^{\prime \prime }\right ) \) where \(\bar {y}\equiv \bar {y}\left ( x,y,y^{\prime },y^{\prime \prime }\right ) \) and \(\bar {x}\equiv \bar {x}\left ( x,y,y^{\prime },y^{\prime }\right ) \) then \(\frac {d^{3}\bar {y}}{d\bar {x}^{3}}\) is given by \begin {align*} \frac {d^{3}\bar {y}}{d\bar {x}^{3}} & =\frac {D_{x}\frac {d^{2}\bar {y}}{d\bar {x}^{2}}}{D_{x}\bar {x}}\\ & =\frac {\bar {y}_{x}^{^{\prime \prime }}+\bar {y}_{y}^{\prime \prime }y^{\prime }+\bar {y}_{y^{\prime }}^{\prime \prime }y^{\prime \prime }+\bar {y}_{y^{\prime \prime }}^{\prime \prime }y^{\prime \prime \prime }}{\bar {x}_{x}^{\prime }+\bar {x}_{y}^{\prime }y^{\prime }}\\ & =\frac {\bar {y}_{x}^{^{\prime \prime }}+\bar {y}_{y}^{\prime \prime }y^{\prime }+\bar {y}_{y^{\prime }}^{\prime \prime }y^{\prime \prime }+\bar {y}_{y^{\prime \prime }}^{\prime \prime }\omega }{\bar {x}_{x}^{\prime }+\bar {x}_{y}^{\prime }y^{\prime }} \end {align*}
To simplify notation we used \(\bar {y}^{\prime \prime }\) for \(\frac {d^{2}\bar {y}}{d\bar {x}^{2}}\) above. And so on for higher order ode’s.