2.2.89 Problems 8801 to 8900

Table 2.179: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8801

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.522

8802

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.301

8803

\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

5.986

8804

\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \]

[_Riccati]

5.135

8805

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.249

8806

\[ {}y^{\prime \prime }-y^{\prime } x -x y-2 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.151

8807

\[ {}y^{\prime \prime }-y^{\prime } x -x y-3 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.148

8808

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{2}-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.631

8809

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.730

8810

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{4}-6 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.707

8811

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{5}+24 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.784

8812

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.120

8813

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.627

8814

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.708

8815

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.698

8816

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.691

8817

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.612

8818

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.401

8819

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.371

8820

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.392

8821

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.371

8822

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.388

8823

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.377

8824

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.379

8825

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.363

8826

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.395

8827

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.370

8828

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.441

8829

\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

8830

\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.387

8831

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

8832

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.317

8833

\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.360

8834

\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.709

8835

\[ {}y^{\prime \prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.722

8836

\[ {}y^{\prime \prime }-x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6.181

8837

\[ {}y^{\prime \prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.490

8838

\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

9.113

8839

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.129

8840

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

71.112

8841

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.127

8842

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

9.331

8843

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

10.335

8844

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16.149

8845

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

359.991

8846

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.661

8847

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.745

8848

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.317

8849

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.773

8850

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.643

8851

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.725

8852

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

191.687

8853

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5.410

8854

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

578.527

8855

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.816

8856

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.684

8857

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.738

8858

\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.060

8859

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

[[_2nd_order, _missing_x]]

3.481

8860

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

9.985

8861

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.498

8862

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.466

8863

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.707

8864

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.585

8865

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.578

8866

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.240

8867

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.482

8868

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.346

8869

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

75.574

8870

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

52.575

8871

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

75.618

8872

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.562

8873

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

2.009

8874

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.935

8875

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.441

8876

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.197

8877

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \]

[[_3rd_order, _with_linear_symmetries]]

3.596

8878

\[ {}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.292

8879

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.799

8880

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

[[_2nd_order, _missing_y]]

1130.267

8881

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.565

8882

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

[NONE]

0.158

8883

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.596

8884

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.405

8885

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.803

8886

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.322

8887

\[ {}y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \]

[[_homogeneous, ‘class D‘]]

3.598

8888

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (1+\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.981

8889

\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

[_rational, _Bernoulli]

1.617

8890

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.884

8891

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.059

8892

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.998

8893

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.958

8894

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.007

8895

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.026

8896

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.033

8897

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.003

8898

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.905

8899

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.001

8900

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.077