2.2.85 Problems 8401 to 8500

Table 2.171: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8401

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-z \\ y^{\prime }=2 y \\ z^{\prime }=y-z \end {array}\right ] \]

system_of_ODEs

0.462

8402

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-7 y \\ y^{\prime }=5 x+10 y+4 z \\ z^{\prime }=5 y+2 z \end {array}\right ] \]

system_of_ODEs

0.546

8403

\[ {}\left [\begin {array}{c} x^{\prime }=y-x \\ y^{\prime }=x+2 y+z \\ z^{\prime }=3 y-z \end {array}\right ] \]

system_of_ODEs

0.542

8404

\[ {}\left [\begin {array}{c} x^{\prime }=x+z \\ y^{\prime }=y \\ z^{\prime }=x+z \end {array}\right ] \]

system_of_ODEs

0.395

8405

\[ {}\left [\begin {array}{c} x^{\prime }=-x-y \\ y^{\prime }=\frac {3 x}{4}-\frac {3 y}{2}+3 z \\ z^{\prime }=\frac {x}{8}+\frac {y}{4}-\frac {z}{2} \end {array}\right ] \]

system_of_ODEs

0.559

8406

\[ {}\left [\begin {array}{c} x^{\prime }=-x-y \\ y^{\prime }=\frac {3 x}{4}-\frac {3 y}{2}+3 z \\ z^{\prime }=\frac {x}{8}+\frac {y}{4}-\frac {z}{2} \end {array}\right ] \]

system_of_ODEs

0.564

8407

\[ {}\left [\begin {array}{c} x^{\prime }=-x+4 y+2 z \\ y^{\prime }=4 x-y-2 z \\ z^{\prime }=6 z \end {array}\right ] \]

system_of_ODEs

0.502

8408

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {x}{2} \\ y^{\prime }=x-\frac {y}{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.515

8409

\[ {}\left [\begin {array}{c} x^{\prime }=x+y+4 z \\ y^{\prime }=2 y \\ z^{\prime }=x+y+z \end {array}\right ] \]
i.c.

system_of_ODEs

0.528

8410

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {9 x}{10}+\frac {21 y}{10}+\frac {16 z}{5} \\ y^{\prime }=\frac {7 x}{10}+\frac {13 y}{2}+\frac {21 z}{5} \\ z^{\prime }=\frac {11 x}{10}+\frac {17 y}{10}+\frac {17 z}{5} \end {array}\right ] \]

system_of_ODEs

63.887

8411

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+2 x_{3}-\frac {9 x_{4}}{5} \\ x_{2}^{\prime }=\frac {51 x_{2}}{10}-x_{4}+3 x_{5} \\ x_{3}^{\prime }=x_{1}+2 x_{2}-3 x_{3} \\ x_{4}^{\prime }=x_{2}-\frac {31 x_{3}}{10}+4 x_{4} \\ x_{5}^{\prime }=-\frac {14 x_{1}}{5}+\frac {3 x_{4}}{2}-x_{5} \end {array}\right ] \]

system_of_ODEs

85.354

8412

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-y \\ y^{\prime }=9 x-3 y \end {array}\right ] \]

system_of_ODEs

0.373

8413

\[ {}\left [\begin {array}{c} x^{\prime }=-6 x+5 y \\ y^{\prime }=-5 x+4 y \end {array}\right ] \]

system_of_ODEs

0.394

8414

\[ {}\left [\begin {array}{c} x^{\prime }=-x+3 y \\ y^{\prime }=-3 x+5 y \end {array}\right ] \]

system_of_ODEs

0.428

8415

\[ {}\left [\begin {array}{c} x^{\prime }=12 x-9 y \\ y^{\prime }=4 x \end {array}\right ] \]

system_of_ODEs

0.411

8416

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-y-z \\ y^{\prime }=x+y-z \\ z^{\prime }=x-y+z \end {array}\right ] \]

system_of_ODEs

0.359

8417

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y+4 z \\ y^{\prime }=2 x+2 z \\ z^{\prime }=4 x+2 y+3 z \end {array}\right ] \]

system_of_ODEs

0.464

8418

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-4 y \\ y^{\prime }=x+2 z \\ z^{\prime }=2 y+5 z \end {array}\right ] \]

system_of_ODEs

0.480

8419

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=3 y+z \\ z^{\prime }=z-y \end {array}\right ] \]

system_of_ODEs

0.349

8420

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=2 x+2 y-z \\ z^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.331

8421

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+y \\ y^{\prime }=4 y+z \\ z^{\prime }=4 z \end {array}\right ] \]

system_of_ODEs

0.286

8422

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y \\ y^{\prime }=-x+6 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.512

8423

\[ {}\left [\begin {array}{c} x^{\prime }=z \\ y^{\prime }=y \\ z^{\prime }=x \end {array}\right ] \]
i.c.

system_of_ODEs

0.334

8424

\[ {}\left [\begin {array}{c} x^{\prime }=6 x-y \\ y^{\prime }=5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.523

8425

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=-2 x-y \end {array}\right ] \]

system_of_ODEs

0.480

8426

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.514

8427

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+5 y \\ y^{\prime }=-2 x+6 y \end {array}\right ] \]

system_of_ODEs

0.604

8428

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-5 y \\ y^{\prime }=5 x-4 y \end {array}\right ] \]

system_of_ODEs

0.540

8429

\[ {}\left [\begin {array}{c} x^{\prime }=x-8 y \\ y^{\prime }=x-3 y \end {array}\right ] \]

system_of_ODEs

0.554

8430

\[ {}\left [\begin {array}{c} x^{\prime }=z \\ y^{\prime }=-z \\ z^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.400

8431

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y+2 z \\ y^{\prime }=3 x+6 z \\ z^{\prime }=-4 x-3 z \end {array}\right ] \]

system_of_ODEs

0.882

8432

\[ {}\left [\begin {array}{c} x^{\prime }=x-12 y-14 z \\ y^{\prime }=x+2 y-3 z \\ z^{\prime }=x+y-2 z \end {array}\right ] \]
i.c.

system_of_ODEs

0.658

8433

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+3 y-7 \\ y^{\prime }=-x-2 y+5 \end {array}\right ] \]

system_of_ODEs

0.621

8434

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+9 y+2 \\ y^{\prime }=-x+11 y+6 \end {array}\right ] \]

system_of_ODEs

0.657

8435

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

3.690

8436

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

2.875

8437

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

4.294

8438

\[ {}x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y = 0 \]

[_separable]

3.585

8439

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

2.138

8440

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

2.293

8441

\[ {}x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y = 0 \]

[_quadrature]

1.723

8442

\[ {}{y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

[_separable]

3.390

8443

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.010

8444

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

4.705

8445

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

[_separable]

3.484

8446

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

[_quadrature]

5.221

8447

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.263

8448

\[ {}x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y = 0 \]

[_quadrature]

2.942

8449

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9.106

8450

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.802

8451

\[ {}x y \left (x^{2}+y^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

11.194

8452

\[ {}x {y^{\prime }}^{3}-\left (x^{2}+x +y\right ) {y^{\prime }}^{2}+\left (x^{2}+x y+y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

2.730

8453

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

2.145

8454

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.570

8455

\[ {}3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.045

8456

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.448

8457

\[ {}{y^{\prime }}^{2}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.341

8458

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.430

8459

\[ {}4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.536

8460

\[ {}4 y^{3} {y^{\prime }}^{2}+4 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.525

8461

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

[_dAlembert]

3.335

8462

\[ {}y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

110.495

8463

\[ {}{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.568

8464

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.441

8465

\[ {}2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

[[_1st_order, _with_linear_symmetries]]

120.611

8466

\[ {}{y^{\prime }}^{2}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.366

8467

\[ {}y = y^{\prime } x +k {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.392

8468

\[ {}x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y = 0 \]

[[_homogeneous, ‘class G‘]]

2.433

8469

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.221

8470

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.684

8471

\[ {}3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.138

8472

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.570

8473

\[ {}y^{\prime } \left (y^{\prime } x -y+k \right )+a = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.535

8474

\[ {}x^{6} {y^{\prime }}^{3}-3 y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

10.343

8475

\[ {}y = x^{6} {y^{\prime }}^{3}-y^{\prime } x \]

[[_1st_order, _with_linear_symmetries]]

12.513

8476

\[ {}x {y^{\prime }}^{4}-2 y {y^{\prime }}^{3}+12 x^{3} = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.431

8477

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.660

8478

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.406

8479

\[ {}2 {y^{\prime }}^{3}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.535

8480

\[ {}2 {y^{\prime }}^{2}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.554

8481

\[ {}{y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.543

8482

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.480

8483

\[ {}{y^{\prime }}^{3}-y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.520

8484

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.492

8485

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

[_rational, _dAlembert]

1.182

8486

\[ {}5 {y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.434

8487

\[ {}{y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.490

8488

\[ {}y = y^{\prime } x +x^{3} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

2.082

8489

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.545

8490

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.641

8491

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.659

8492

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.451

8493

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.368

8494

\[ {}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.288

8495

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

0.664

8496

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

1.595

8497

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

1.709

8498

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.293

8499

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.636

8500

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.928