2.2.81 Problems 8001 to 8100

Table 2.163: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8001

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (x +1\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.713

8002

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.740

8003

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.391

8004

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

2.619

8005

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.582

8006

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.510

8007

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.342

8008

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.339

8009

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.378

8010

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.435

8011

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.372

8012

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

0.345

8013

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.366

8014

\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.895

8015

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.360

8016

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.072

8017

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.078

8018

\[ {}y^{\prime \prime \prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.084

8019

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.080

8020

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.076

8021

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.085

8022

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.081

8023

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.086

8024

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

[[_high_order, _missing_x]]

0.086

8025

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

[[_high_order, _missing_x]]

0.110

8026

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.085

8027

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

0.089

8028

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

0.081

8029

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

0.088

8030

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

[[_high_order, _missing_x]]

0.089

8031

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

0.043

8032

\[ {}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

[[_high_order, _quadrature]]

0.152

8033

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

0.140

8034

\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \]
i.c.

[[_3rd_order, _missing_x]]

0.212

8035

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

0.125

8036

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.132

8037

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.137

8038

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_y]]

0.278

8039

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.446

8040

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.506

8041

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.259

8042

\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

2.529

8043

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = x \]

[[_2nd_order, _with_linear_symmetries]]

2.006

8044

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

2.303

8045

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

40.220

8046

\[ {}y^{\prime \prime }-y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.332

8047

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.689

8048

\[ {}y^{\prime \prime }-y^{\prime }+4 y = x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

22.090

8049

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

12.430

8050

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

75.774

8051

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.698

8052

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.494

8053

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

22.459

8054

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

3.849

8055

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1 \]

[[_2nd_order, _with_linear_symmetries]]

1.341

8056

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

1.338

8057

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.786

8058

\[ {}y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.038

8059

\[ {}y^{\prime \prime }+9 y = \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

30.182

8060

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.970

8061

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {2}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.970

8062

\[ {}y^{\prime \prime }+4 y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.603

8063

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.656

8064

\[ {}y^{\prime \prime }+y = -8 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.819

8065

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

1.002

8066

\[ {}y^{\prime \prime }+y^{\prime } = \frac {x -1}{x} \]

[[_2nd_order, _missing_y]]

0.895

8067

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.458

8068

\[ {}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.087

8069

\[ {}y^{\prime }+y = \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

1.438

8070

\[ {}y^{\prime \prime } = -3 y \]
i.c.

[[_2nd_order, _missing_x]]

97.720

8071

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.068

8072

\[ {}y^{\prime } = 2 x y \]

[_separable]

0.731

8073

\[ {}y^{\prime } = 2 x y \]

[_separable]

1.626

8074

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

0.415

8075

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

1.242

8076

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

0.625

8077

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

1.144

8078

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

0.389

8079

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

1.394

8080

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.619

8081

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

1.378

8082

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

0.616

8083

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

1.319

8084

\[ {}y^{\prime } x = y \]

[_separable]

0.528

8085

\[ {}y^{\prime } x = y \]

[_separable]

1.621

8086

\[ {}x^{2} y^{\prime } = y \]

[_separable]

0.098

8087

\[ {}x^{2} y^{\prime } = y \]

[_separable]

1.744

8088

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

0.574

8089

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

1.665

8090

\[ {}y^{\prime }+\frac {y}{x} = x \]

[_linear]

1.634

8091

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]

[_quadrature]

0.432

8092

\[ {}y^{\prime } = 1+y \]

[_quadrature]

0.410

8093

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

0.669

8094

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

1.509

8095

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.693

8096

\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.751

8097

\[ {}y^{\prime \prime }+2 y^{\prime } x -y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.708

8098

\[ {}y^{\prime \prime }+y^{\prime }-x^{2} y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.762

8099

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.765

8100

\[ {}y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.698