2.2.74 Problems 7301 to 7400

Table 2.149: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7301

\[ {}y^{\prime \prime }+3 y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.523

7302

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y = 0 \]
i.c.

[_Gegenbauer]

0.608

7303

\[ {}\left (x -2\right ) y^{\prime } = x y \]
i.c.

[_separable]

0.655

7304

\[ {}\left (x -2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.664

7305

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.748

7306

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

1.129

7307

\[ {}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.802

7308

\[ {}x y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.321

7309

\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.526

7310

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

0.622

7311

\[ {}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Jacobi]

0.861

7312

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.756

7313

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.918

7314

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.844

7315

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.800

7316

\[ {}2 x \left (1-x \right ) y^{\prime \prime }-\left (1+6 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.897

7317

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

0.915

7318

\[ {}4 x y^{\prime \prime }+y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

0.847

7319

\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.704

7320

\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.706

7321

\[ {}3 t \left (1+t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.279

7322

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{49}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.809

7323

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

0.745

7324

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{-2 x}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.968

7325

\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.894

7326

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.845

7327

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+16 x \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.755

7328

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-6\right ) y = 0 \]

[_Bessel]

0.858

7329

\[ {}x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

[_Lienard]

1.138

7330

\[ {}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (36 x^{4}-16\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.801

7331

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.475

7332

\[ {}4 x y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.753

7333

\[ {}x y^{\prime \prime }+y^{\prime }+36 y = 0 \]

[[_Emden, _Fowler]]

0.742

7334

\[ {}y^{\prime \prime }+k^{2} x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.492

7335

\[ {}y^{\prime \prime }+k^{2} x^{4} y = 0 \]

[[_Emden, _Fowler]]

0.486

7336

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

[_Lienard]

1.177

7337

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.611

7338

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.807

7339

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-\left (x -1\right ) y^{\prime }-35 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.653

7340

\[ {}16 \left (x +1\right )^{2} y^{\prime \prime }+3 y = 0 \]

[[_Emden, _Fowler]]

0.627

7341

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

0.845

7342

\[ {}x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.908

7343

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.842

7344

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.750

7345

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

1.137

7346

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.625

7347

\[ {}y^{\prime }+\frac {26 y}{5} = \frac {97 \sin \left (2 t \right )}{5} \]
i.c.

[[_linear, ‘class A‘]]

0.554

7348

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

0.377

7349

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.250

7350

\[ {}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.332

7351

\[ {}y^{\prime \prime }-\frac {y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.248

7352

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.350

7353

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.329

7354

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.242

7355

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.279

7356

\[ {}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.225

7357

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.286

7358

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.476

7359

\[ {}y^{\prime }-6 y = 0 \]
i.c.

[_quadrature]

0.387

7360

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.510

7361

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.339

7362

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.221

7363

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.291

7364

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.228

7365

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.755

7366

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.124

7367

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.115

7368

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.721

7369

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.795

7370

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.776

7371

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.346

7372

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.527

7373

\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.559

7374

\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.522

7375

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.804

7376

\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.923

7377

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.642

7378

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.411

7379

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.958

7380

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.865

7381

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.631

7382

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

2.181

7383

\[ {}y^{\prime } = \frac {x^{2}}{y \left (x^{3}+1\right )} \]

[_separable]

1.612

7384

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

1.913

7385

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

1.930

7386

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1.221

7387

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

[_separable]

6.077

7388

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

2.596

7389

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

1.791

7390

\[ {}y^{\prime } x +y = y^{2} \]
i.c.

[_separable]

2.486

7391

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

2.449

7392

\[ {}y^{\prime }-x y^{2} = 2 x y \]

[_separable]

2.193

7393

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

1.402

7394

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]
i.c.

[_separable]

2.337

7395

\[ {}{\mathrm e}^{x}-\left ({\mathrm e}^{x}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

3.391

7396

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

2.887

7397

\[ {}x +2 x^{3}+\left (y+2 y^{3}\right ) y^{\prime } = 0 \]

[_separable]

2.252

7398

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

15.297

7399

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

19.490

7400

\[ {}2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \]

[_separable]

1.977