2.2.60 Problems 5901 to 6000

Table 2.121: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5901

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+2 x y+x^{2}+3 = 0 \]

[_exact, _rational]

1.310

5902

\[ {}\cos \left (x \right ) y^{\prime }+y+\left (1+\sin \left (x \right )\right ) \cos \left (x \right ) = 0 \]

[_linear]

2.932

5903

\[ {}y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.994

5904

\[ {}\left (x^{2}-y\right ) y^{\prime }+x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

1.048

5905

\[ {}\left (x^{2}-y\right ) y^{\prime }-4 x y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.281

5906

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.138

5907

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

61.533

5908

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.782

5909

\[ {}\left (x y-1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.047

5910

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4.693

5911

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.609

5912

\[ {}2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16.756

5913

\[ {}\left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }-x y+y^{2} = 0 \]

[_rational]

1.636

5914

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

2.062

5915

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

1.683

5916

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.954

5917

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.082

5918

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.255

5919

\[ {}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.116

5920

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.298

5921

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

0.088

5922

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.085

5923

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

0.087

5924

\[ {}y^{\prime \prime \prime \prime }-a^{2} y = 0 \]

[[_high_order, _missing_x]]

0.114

5925

\[ {}y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1.078

5926

\[ {}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

0.802

5927

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

0.050

5928

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.222

5929

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.083

5930

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.080

5931

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

0.670

5932

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.074

5933

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.084

5934

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

[[_high_order, _missing_x]]

0.092

5935

\[ {}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

0.089

5936

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

0.147

5937

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.974

5938

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.472

5939

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

[[_high_order, _missing_x]]

0.092

5940

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

2.062

5941

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.095

5942

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

0.085

5943

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.115

5944

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.093

5945

\[ {}y^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

6.228

5946

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.571

5947

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.875

5948

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.955

5949

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.150

5950

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

[[_2nd_order, _missing_x]]

1.235

5951

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.274

5952

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]

[[_2nd_order, _with_linear_symmetries]]

1.149

5953

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.623

5954

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.646

5955

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.154

5956

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

29.989

5957

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.492

5958

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

2.985

5959

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

[[_2nd_order, _missing_y]]

2.110

5960

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

3.058

5961

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.559

5962

\[ {}y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.278

5963

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.427

5964

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.496

5965

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.431

5966

\[ {}y^{\prime \prime }+y^{\prime }-6 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

2.015

5967

\[ {}y^{\prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.302

5968

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.115

5969

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.134

5970

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.943

5971

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.732

5972

\[ {}y^{\prime \prime }+9 y = 8 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.580

5973

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{x} \left (2 x -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.715

5974

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.606

5975

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.053

5976

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.354

5977

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.269

5978

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.027

5979

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.164

5980

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.247

5981

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.418

5982

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.472

5983

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.514

5984

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.111

5985

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.708

5986

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.472

5987

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.590

5988

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.505

5989

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.779

5990

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.823

5991

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.264

5992

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.428

5993

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.402

5994

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.816

5995

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.632

5996

\[ {}y^{3} y^{\prime \prime } = k \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.084

5997

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.160

5998

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

0.944

5999

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

1.175

6000

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.532