2.2.6 Problems 501 to 600

Table 2.13: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

501

\[ {}5 x y^{\prime \prime }+\left (30+3 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.669

502

\[ {}x y^{\prime \prime }-\left (x +4\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

0.620

503

\[ {}2 x y^{\prime \prime }-\left (6+2 x \right ) y^{\prime }+y = 0 \]

[_Laguerre]

4.206

504

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.541

505

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.509

506

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.850

507

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.405

508

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.416

509

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.673

510

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}-3 x \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.516

511

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.614

512

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.671

513

\[ {}x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.486

514

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.335

515

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

[_Lienard]

0.860

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.367

517

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (8+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.120

518

\[ {}36 x^{2} y^{\prime \prime }+60 y^{\prime } x +\left (9 x^{3}-5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.904

519

\[ {}16 x^{2} y^{\prime \prime }+24 y^{\prime } x +\left (144 x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.872

520

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.931

521

\[ {}4 x^{2} y^{\prime \prime }-12 y^{\prime } x +\left (15+16 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.662

522

\[ {}16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

33.106

523

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x -2 \left (-x^{5}+14\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.517

524

\[ {}y^{\prime \prime }+x^{4} y = 0 \]

[[_Emden, _Fowler]]

2.073

525

\[ {}x y^{\prime \prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

2.120

526

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

1.546

527

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

1.308

528

\[ {}y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

3.149

529

\[ {}y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

1.450

530

\[ {}x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.276

531

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.296

532

\[ {}x^{\prime \prime }-x^{\prime }-2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.264

533

\[ {}x^{\prime \prime }+8 x^{\prime }+15 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.203

534

\[ {}x^{\prime \prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.335

535

\[ {}x^{\prime \prime }+4 x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.305

536

\[ {}x^{\prime \prime }+x = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.312

537

\[ {}x^{\prime \prime }+9 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.270

538

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.228

539

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.235

540

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=6 x+3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.626

541

\[ {}x^{\prime \prime }+6 x^{\prime }+25 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.326

542

\[ {}x^{\prime \prime }-6 x^{\prime }+8 x = 2 \]
i.c.

[[_2nd_order, _missing_x]]

0.205

543

\[ {}x^{\prime \prime }-4 x = 3 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.204

544

\[ {}x^{\prime \prime }+4 x^{\prime }+8 x = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.348

545

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-6 x^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.286

546

\[ {}x^{\prime \prime \prime \prime }-x = 0 \]
i.c.

[[_high_order, _missing_x]]

0.356

547

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]
i.c.

[[_high_order, _missing_x]]

0.611

548

\[ {}x^{\prime \prime \prime \prime }+13 x^{\prime \prime }+36 x = 0 \]
i.c.

[[_high_order, _missing_x]]

0.463

549

\[ {}x^{\prime \prime \prime \prime }+8 x^{\prime \prime }+16 x = 0 \]
i.c.

[[_high_order, _missing_x]]

0.429

550

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = {\mathrm e}^{2 t} \]
i.c.

[[_high_order, _with_linear_symmetries]]

0.503

551

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.425

552

\[ {}x^{\prime \prime }+6 x^{\prime }+18 x = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.458

553

\[ {}x^{\prime \prime }+9 x = 6 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.286

554

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+\frac {226 x}{25} = 6 \,{\mathrm e}^{-\frac {t}{5}} \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.318

555

\[ {}t x^{\prime \prime }+\left (t -2\right ) x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.218

556

\[ {}t x^{\prime \prime }+\left (3 t -1\right ) x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.211

557

\[ {}t x^{\prime \prime }-\left (4 t +1\right ) x^{\prime }+2 \left (2 t +1\right ) x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.220

558

\[ {}t x^{\prime \prime }+2 \left (t -1\right ) x^{\prime }-2 x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.226

559

\[ {}t x^{\prime \prime }-2 x^{\prime }+t x = 0 \]
i.c.

[_Lienard]

0.219

560

\[ {}t x^{\prime \prime }+\left (4 t -2\right ) x^{\prime }+\left (13 t -4\right ) x = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.261

561

\[ {}x^{\prime \prime }+4 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.512

562

\[ {}x^{\prime \prime }+2 x^{\prime }+x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.829

563

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.675

564

\[ {}x^{\prime \prime }+4 x = \delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.223

565

\[ {}x^{\prime \prime }+4 x = \delta \left (t \right )+\delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.422

566

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 1+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.283

567

\[ {}x^{\prime \prime }+2 x^{\prime }+x = t +\delta \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.160

568

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.235

569

\[ {}x^{\prime \prime }+9 x = \delta \left (t -3 \pi \right )+\cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.789

570

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = \delta \left (t -\pi \right )+\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6.327

571

\[ {}x^{\prime \prime }+2 x^{\prime }+x = \delta \left (t \right )-\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.158

572

\[ {}x^{\prime \prime }+4 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.233

573

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.650

574

\[ {}x^{\prime \prime }+6 x^{\prime }+8 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.767

575

\[ {}x^{\prime \prime }+4 x^{\prime }+8 x = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.318

576

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x \end {array}\right ] \]

system_of_ODEs

0.428

577

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.360

578

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y \\ y^{\prime }=2 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.529

579

\[ {}\left [\begin {array}{c} x^{\prime }=10 y \\ y^{\prime }=-10 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.497

580

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y}{2} \\ y^{\prime }=-8 x \end {array}\right ] \]

system_of_ODEs

0.437

581

\[ {}\left [\begin {array}{c} x^{\prime }=8 y \\ y^{\prime }=-2 x \end {array}\right ] \]

system_of_ODEs

0.430

582

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=6 x-y \end {array}\right ] \]
i.c.

system_of_ODEs

0.477

583

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=10 x-7 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.457

584

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=13 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.613

585

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-9 x+6 y \end {array}\right ] \]

system_of_ODEs

0.376

586

\[ {}\left [\begin {array}{c} 10 x_{1}^{\prime }=-x_{1}+x_{3} \\ 10 x_{2}^{\prime }=x_{1}-x_{2} \\ 10 x_{3}^{\prime }=x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.851

587

\[ {}\left [\begin {array}{c} x^{\prime }=-x+3 y \\ y^{\prime }=2 y \end {array}\right ] \]

system_of_ODEs

0.308

588

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=2 x-3 y \end {array}\right ] \]

system_of_ODEs

0.320

589

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+2 y \\ y^{\prime }=-3 x+4 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.498

590

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-y \\ y^{\prime }=5 x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.566

591

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-4 y \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.507

592

\[ {}\left [\begin {array}{c} x^{\prime }=x+9 y \\ y^{\prime }=-2 x-5 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.630

593

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+y+2 t \\ y^{\prime }=-2 x+y \end {array}\right ] \]

system_of_ODEs

0.960

594

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y \\ y^{\prime }=x+2 y-{\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.426

595

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-3 y+2 \sin \left (2 t \right ) \\ y^{\prime }=x-2 y-\cos \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

0.855

596

\[ {}\left [\begin {array}{c} x^{\prime }+2 y^{\prime }=4 x+5 y \\ 2 x^{\prime }-y^{\prime }=3 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.394

597

\[ {}\left [\begin {array}{c} -x^{\prime }+2 y^{\prime }=x+3 y+{\mathrm e}^{t} \\ 3 x^{\prime }-4 y^{\prime }=x-15 y+{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.839

598

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+z \\ y^{\prime }=6 x-y \\ z^{\prime }=-x-2 y-z \end {array}\right ] \]

system_of_ODEs

0.546

599

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=-4 x+4 y-2 z \\ z^{\prime }=-4 y+4 z \end {array}\right ] \]

system_of_ODEs

72.037

600

\[ {}\left [\begin {array}{c} x^{\prime }=y+z+{\mathrm e}^{-t} \\ y^{\prime }=x+z \\ z^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.493