2.2.58 Problems 5701 to 5800

Table 2.117: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

5701

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

3.272

5702

\[ {}1+y^{2}-\left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime } = 0 \]

[_separable]

2.972

5703

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.847

5704

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

37.282

5705

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.106

5706

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

95.435

5707

\[ {}y^{\prime } x -y-\sqrt {x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.686

5708

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.994

5709

\[ {}8 y+10 x +\left (7 x +5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.174

5710

\[ {}2 x -y+1+\left (2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.312

5711

\[ {}\left (3-3 x +7 y\right ) y^{\prime }+7-7 x +3 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.308

5712

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

[_linear]

1.366

5713

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

1.151

5714

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

3.510

5715

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

2.309

5716

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

[_linear]

1.978

5717

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

2.183

5718

\[ {}3 z^{2} z^{\prime }-a z^{3} = x +1 \]

[_rational, _Bernoulli]

1.640

5719

\[ {}z^{\prime }+2 x z = 2 a \,x^{3} z^{3} \]

[_Bernoulli]

1.209

5720

\[ {}z^{\prime }+z \cos \left (x \right ) = z^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

4.960

5721

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

2.121

5722

\[ {}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.561

5723

\[ {}1+\frac {y^{2}}{x^{2}}-\frac {2 y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

0.375

5724

\[ {}\frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.483

5725

\[ {}x +y y^{\prime }+\frac {x y^{\prime }}{x^{2}+y^{2}}-\frac {y}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

0.449

5726

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

0.432

5727

\[ {}{\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

0.448

5728

\[ {}n \cos \left (n x +m y\right )-m \sin \left (m x +n y\right )+\left (m \cos \left (n x +m y\right )-n \sin \left (m x +n y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.287

5729

\[ {}\frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{x^{2}+y^{2}}-\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

0.722

5730

\[ {}\frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0 \]

[_Riccati]

7.141

5731

\[ {}2 x y+\left (y^{2}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.500

5732

\[ {}\frac {1}{x}+\frac {y^{\prime }}{y}+\frac {2}{y}-\frac {2 y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.451

5733

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.216

5734

\[ {}8 y+10 x +\left (7 x +5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.307

5735

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.388

5736

\[ {}y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.510

5737

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y+\left (x \cos \left (\frac {y}{x}\right )-y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

0.525

5738

\[ {}\left (x^{2} y^{2}+x y\right ) y+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.686

5739

\[ {}\left (x^{3} y^{3}+x^{2} y^{2}+x y+1\right ) y+\left (x^{3} y^{3}-x^{2} y^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.132

5740

\[ {}2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

0.513

5741

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.444

5742

\[ {}2 x y+\left (y^{2}-3 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.424

5743

\[ {}y+\left (2 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.469

5744

\[ {}y^{\prime } x -a y+y^{2} = x^{-2 a} \]

[_rational, _Riccati]

0.687

5745

\[ {}y^{\prime } x -a y+y^{2} = x^{-\frac {2 a}{3}} \]

[_rational, _Riccati]

2.572

5746

\[ {}u^{\prime }+u^{2} = \frac {c}{x^{{4}/{3}}} \]

[_rational, [_Riccati, _special]]

0.344

5747

\[ {}u^{\prime }+b u^{2} = \frac {c}{x^{4}} \]

[_rational, [_Riccati, _special]]

0.289

5748

\[ {}u^{\prime }-u^{2} = \frac {2}{x^{{8}/{3}}} \]

[_rational, [_Riccati, _special]]

0.414

5749

\[ {}\frac {\sqrt {f \,x^{4}+c \,x^{3}+c \,x^{2}+b x +a}\, y^{\prime }}{\sqrt {a +b y+c y^{2}+c y^{3}+f y^{4}}} = -1 \]

[_separable]

10.859

5750

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

1.433

5751

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

[_quadrature]

0.411

5752

\[ {}{y^{\prime }}^{2} = \frac {1-x}{x} \]

[_quadrature]

0.306

5753

\[ {}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.013

5754

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

0.625

5755

\[ {}x = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

0.234

5756

\[ {}y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

1.776

5757

\[ {}x = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

[_quadrature]

1.101

5758

\[ {}y^{\prime }-\frac {\sqrt {1+{y^{\prime }}^{2}}}{x} = 0 \]

[_quadrature]

1.137

5759

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

2.302

5760

\[ {}1+{y^{\prime }}^{2} = \frac {\left (x +a \right )^{2}}{2 a x +x^{2}} \]

[_quadrature]

0.647

5761

\[ {}y = y^{\prime } x +y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.401

5762

\[ {}y = y^{\prime } x +\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

3.598

5763

\[ {}y = y^{\prime } x +x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

33.130

5764

\[ {}y = y^{\prime } x +a x \sqrt {1+{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

315.136

5765

\[ {}x -y y^{\prime } = a {y^{\prime }}^{2} \]

[_dAlembert]

509.929

5766

\[ {}x +y y^{\prime } = a \sqrt {1+{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

459.137

5767

\[ {}y y^{\prime } = x +y^{2}-y^{2} {y^{\prime }}^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7.529

5768

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.731

5769

\[ {}y-2 y^{\prime } x = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.271

5770

\[ {}\frac {y-y^{\prime } x}{y^{2}+y^{\prime }} = \frac {y-y^{\prime } x}{1+x^{2} y^{\prime }} \]

[_separable]

0.555

5771

\[ {}2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4.198

5772

\[ {}\left (x +\sqrt {y^{2}-x y}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.023

5773

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.686

5774

\[ {}y^{\prime } x -y-x \sin \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.885

5775

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

24.315

5776

\[ {}y^{2}+\left (x \sqrt {y^{2}-x^{2}}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

10.418

5777

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.609

5778

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.105

5779

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.119

5780

\[ {}x \,{\mathrm e}^{\frac {y}{x}}-y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.844

5781

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.949

5782

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = y^{\prime } x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4.591

5783

\[ {}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

5.199

5784

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3.422

5785

\[ {}x +2 y-4-\left (2 x -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.629

5786

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.957

5787

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

[_quadrature]

0.867

5788

\[ {}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.834

5789

\[ {}x +y-1-\left (x -y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.499

5790

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.796

5791

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

2.128

5792

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.898

5793

\[ {}x +2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.005

5794

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

50.262

5795

\[ {}x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.935

5796

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.215

5797

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

23.307

5798

\[ {}x +y+2-\left (x -y-4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.541

5799

\[ {}3 x^{2} y+8 x y^{2}+\left (x^{3}+8 x^{2} y+12 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

0.379

5800

\[ {}\frac {1+2 x y}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.433