2.2.46 Problems 4501 to 4600

Table 2.93: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4501

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.753

4502

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.219

4503

\[ {}y^{\prime \prime }-y = \frac {1}{\sqrt {1-{\mathrm e}^{2 x}}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.991

4504

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.217

4505

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 15 \,{\mathrm e}^{-x} \sqrt {x +1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.555

4506

\[ {}y^{\prime \prime }+4 y = 2 \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.732

4507

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.931

4508

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{{\mathrm e}^{x}+1} \]

[[_2nd_order, _missing_y]]

2.266

4509

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.857

4510

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = \frac {5 \ln \left (x \right )}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18.487

4511

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2} \ln \left (x \right ) \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.285

4512

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.450

4513

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

1.308

4514

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 60 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

4515

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 9 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.276

4516

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 t^{2}+1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.287

4517

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

4518

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.283

4519

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 8 \,{\mathrm e}^{-t} \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.448

4520

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 8 \,{\mathrm e}^{t} \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.339

4521

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 54 t \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.280

4522

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 9 \,{\mathrm e}^{2 t} \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.598

4523

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.710

4524

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.579

4525

\[ {}y^{\prime \prime }+4 y = 8 \left (t^{2}+t -1\right ) \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.184

4526

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t} \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.557

4527

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.549

4528

\[ {}y^{\prime \prime }+4 y = 4 \operatorname {Heaviside}\left (t -\pi \right )+2 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.800

4529

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.436

4530

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

7.908

4531

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 t^{2} \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

8.227

4532

\[ {}y^{\prime \prime \prime \prime }+4 y = \left (2 t^{2}+t +1\right ) \delta \left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

3.254

4533

\[ {}\left [\begin {array}{c} x^{\prime }+2 x-y=0 \\ x+y^{\prime }-2 y=0 \end {array}\right ] \]

system_of_ODEs

0.536

4534

\[ {}\left [\begin {array}{c} 2 x^{\prime }+x-5 y^{\prime }-4 y=0 \\ -y^{\prime }-2 x+y=0 \end {array}\right ] \]

system_of_ODEs

0.443

4535

\[ {}\left [\begin {array}{c} x^{\prime }-x+3 y=0 \\ 3 x-y^{\prime }+y=0 \end {array}\right ] \]

system_of_ODEs

0.467

4536

\[ {}\left [\begin {array}{c} x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y=0 \\ x^{\prime }+x-y^{\prime }=0 \end {array}\right ] \]

system_of_ODEs

0.056

4537

\[ {}\left [\begin {array}{c} x^{\prime \prime }-3 x-4 y=0 \\ x+y^{\prime \prime }+y=0 \end {array}\right ] \]

system_of_ODEs

0.055

4538

\[ {}\left [\begin {array}{c} y_{1}^{\prime }-y_{2}=0 \\ 4 y_{1}+y_{2}^{\prime }-4 y_{2}-2 y_{3}=0 \\ -2 y_{1}+y_{2}+y_{3}^{\prime }+y_{3}=0 \end {array}\right ] \]

system_of_ODEs

0.487

4539

\[ {}\left [\begin {array}{c} y_{1}^{\prime }-2 y_{1}+3 y_{2}-3 y_{3}=0 \\ -4 y_{1}+y_{2}^{\prime }+5 y_{2}-3 y_{3}=0 \\ -4 y_{1}+4 y_{2}+y_{3}^{\prime }-2 y_{3}=0 \end {array}\right ] \]

system_of_ODEs

0.466

4540

\[ {}\left [\begin {array}{c} x^{\prime }+x+2 y=8 \\ 2 x+y^{\prime }-2 y=2 \,{\mathrm e}^{-t}-8 \end {array}\right ] \]

system_of_ODEs

0.530

4541

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-3 y+t \,{\mathrm e}^{-t} \\ y^{\prime }=2 x-3 y+{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.502

4542

\[ {}\left [\begin {array}{c} x^{\prime }-x-2 y={\mathrm e}^{t} \\ -4 x+y^{\prime }-3 y=1 \end {array}\right ] \]

system_of_ODEs

0.513

4543

\[ {}\left [\begin {array}{c} x^{\prime }-4 x+3 y=\sin \left (t \right ) \\ -2 x+y^{\prime }+y=-2 \cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.595

4544

\[ {}\left [\begin {array}{c} x^{\prime }-y=0 \\ -x+y^{\prime }={\mathrm e}^{t}+{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.488

4545

\[ {}\left [\begin {array}{c} x^{\prime }+2 x+5 y=0 \\ -x+y^{\prime }-2 y=\sin \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

0.640

4546

\[ {}\left [\begin {array}{c} x^{\prime }-2 x+2 y^{\prime }=-4 \,{\mathrm e}^{2 t} \\ 2 x^{\prime }-3 x+3 y^{\prime }-y=0 \end {array}\right ] \]

system_of_ODEs

0.520

4547

\[ {}\left [\begin {array}{c} 3 x^{\prime }+2 x+y^{\prime }-6 y=5 \,{\mathrm e}^{t} \\ 4 x^{\prime }+2 x+y^{\prime }-8 y=5 \,{\mathrm e}^{t}+2 t -3 \end {array}\right ] \]

system_of_ODEs

0.685

4548

\[ {}\left [\begin {array}{c} x^{\prime }-5 x+3 y=2 \,{\mathrm e}^{3 t} \\ -x+y^{\prime }-y=5 \,{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.542

4549

\[ {}\left [\begin {array}{c} x^{\prime }-2 x+y=0 \\ x+y^{\prime }-2 y=-5 \,{\mathrm e}^{t} \sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.561

4550

\[ {}\left [\begin {array}{c} x^{\prime }+4 x+2 y=\frac {2}{{\mathrm e}^{t}-1} \\ 6 x-y^{\prime }+3 y=\frac {3}{{\mathrm e}^{t}-1} \end {array}\right ] \]

system_of_ODEs

0.070

4551

\[ {}\left [\begin {array}{c} x^{\prime }-x+y=\sec \left (t \right ) \\ -2 x+y^{\prime }+y=0 \end {array}\right ] \]

system_of_ODEs

0.801

4552

\[ {}\left [\begin {array}{c} x^{\prime }-x-2 y=16 t \,{\mathrm e}^{t} \\ 2 x-y^{\prime }-2 y=0 \end {array}\right ] \]
i.c.

system_of_ODEs

0.296

4553

\[ {}\left [\begin {array}{c} x^{\prime }-2 x+y=5 \,{\mathrm e}^{t} \cos \left (t \right ) \\ x+y^{\prime }-2 y=10 \,{\mathrm e}^{t} \sin \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.356

4554

\[ {}\left [\begin {array}{c} x^{\prime }-4 x+3 y=\sin \left (t \right ) \\ 2 x+y^{\prime }-y=2 \cos \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.291

4555

\[ {}\left [\begin {array}{c} x^{\prime }-2 x-y=2 \,{\mathrm e}^{t} \\ x-y^{\prime }+2 y=3 \,{\mathrm e}^{4 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.237

4556

\[ {}\left [\begin {array}{c} x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y=40 \,{\mathrm e}^{3 t} \\ x^{\prime }+x-y^{\prime }=36 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.050

4557

\[ {}\left [\begin {array}{c} x^{\prime }-2 x-y=2 \,{\mathrm e}^{t} \\ y^{\prime }-2 y-4 z=4 \,{\mathrm e}^{2 t} \\ x-z^{\prime }-z=0 \end {array}\right ] \]
i.c.

system_of_ODEs

0.247

4558

\[ {}\left [\begin {array}{c} x^{\prime \prime }+2 x-2 y^{\prime }=0 \\ 3 x^{\prime }+y^{\prime \prime }-8 y=240 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.051

4559

\[ {}\left [\begin {array}{c} x^{\prime }-x-2 y=0 \\ x-y^{\prime }=15 \cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.399

4560

\[ {}\left [\begin {array}{c} x^{\prime }-x+y=2 \sin \left (t \right ) \left (1-\operatorname {Heaviside}\left (t -\pi \right )\right ) \\ 2 x-y^{\prime }-y=0 \end {array}\right ] \]
i.c.

system_of_ODEs

0.481

4561

\[ {}\left [\begin {array}{c} 2 x^{\prime }+x-5 y^{\prime }-4 y=28 \,{\mathrm e}^{t} \operatorname {Heaviside}\left (t -2\right ) \\ 3 x^{\prime }-2 x-4 y^{\prime }+y=0 \end {array}\right ] \]
i.c.

system_of_ODEs

0.460

4562

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2} \\ x_{2}^{\prime }=-4 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.418

4563

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-3 x_{2} \\ x_{2}^{\prime }=3 x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

0.458

4564

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=5 x_{1}+3 x_{2} \\ x_{2}^{\prime }=-3 x_{1}-x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.521

4565

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=x_{1}-x_{2}+2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.446

4566

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+x_{2}+x_{3} \\ x_{3}^{\prime }=4 x_{1}-x_{2}+4 x_{3} \end {array}\right ] \]

system_of_ODEs

0.491

4567

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2} \\ x_{2}^{\prime }=x_{1}+3 x_{2}-x_{3} \\ x_{3}^{\prime }=-x_{1}+2 x_{2}+3 x_{3} \end {array}\right ] \]

system_of_ODEs

0.741

4568

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2}-x_{3} \\ x_{2}^{\prime }=3 x_{1}-4 x_{2}-3 x_{3} \\ x_{3}^{\prime }=2 x_{1}-4 x_{2} \end {array}\right ] \]

system_of_ODEs

0.490

4569

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+x_{2}-x_{3} \\ x_{3}^{\prime }=-2 x_{2}+2 x_{3} \end {array}\right ] \]
i.c.

system_of_ODEs

0.465

4570

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+x_{2}-2 x_{3} \\ x_{2}^{\prime }=4 x_{1}+x_{2} \\ x_{3}^{\prime }=2 x_{1}+x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.461

4571

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}+26 \sin \left (t \right ) \\ x_{2}^{\prime }=3 x_{1}+4 x_{2} \end {array}\right ] \]

system_of_ODEs

0.581

4572

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+8 x_{2}+9 t \\ x_{2}^{\prime }=x_{1}+x_{2}+3 \,{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.543

4573

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+2 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+4 x_{2}+\frac {{\mathrm e}^{3 t}}{1+{\mathrm e}^{2 t}} \end {array}\right ] \]

system_of_ODEs

0.070

4574

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}-2 x_{2}+\frac {2}{{\mathrm e}^{t}-1} \\ x_{2}^{\prime }=6 x_{1}+3 x_{2}-\frac {3}{{\mathrm e}^{t}-1} \end {array}\right ] \]

system_of_ODEs

0.070

4575

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}+{\mathrm e}^{2 t} \\ x_{2}^{\prime }=-2 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.628

4576

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}-5 x_{2} \\ x_{2}^{\prime }=x_{1}+x_{2}+\frac {4}{\sin \left (2 t \right )} \end {array}\right ] \]

system_of_ODEs

0.964

4577

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}+x_{2}+27 t \\ x_{2}^{\prime }=-x_{1}+4 x_{2} \end {array}\right ] \]

system_of_ODEs

0.452

4578

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2}+{\mathrm e}^{t} \\ x_{2}^{\prime }=4 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.477

4579

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }=2 x_{1}-x_{2}+35 \,{\mathrm e}^{t} t^{{3}/{2}} \end {array}\right ] \]

system_of_ODEs

0.506

4580

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}+x_{3} \\ x_{2}^{\prime }=x_{1}+x_{2}-x_{3}+6 \,{\mathrm e}^{-t} \\ x_{3}^{\prime }=2 x_{1}-x_{2} \end {array}\right ] \]

system_of_ODEs

0.673

4581

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-2 x_{2}-x_{3} \\ x_{2}^{\prime }=-x_{1}+x_{2}+x_{3}+12 t \\ x_{3}^{\prime }=x_{1}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.753

4582

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1}+4 x_{2}-2 x_{3}+{\mathrm e}^{t} \\ x_{2}^{\prime }=x_{1}+x_{2} \\ x_{3}^{\prime }=6 x_{1}-6 x_{2}+5 x_{3} \end {array}\right ] \]

system_of_ODEs

111.138

4583

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-x_{2}-x_{3}+4 \,{\mathrm e}^{t} \\ x_{2}^{\prime }=x_{1}+x_{2} \\ x_{3}^{\prime }=3 x_{1}+x_{3} \end {array}\right ] \]

system_of_ODEs

0.968

4584

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2}+2 x_{3} \\ x_{2}^{\prime }=x_{1}+2 x_{3} \\ x_{3}^{\prime }=-2 x_{1}+x_{2}-x_{3}+4 \sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.297

4585

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }=x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }=x_{1}+x_{2}+2 x_{3} \end {array}\right ] \]

system_of_ODEs

1.993

4586

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{2}-x_{3}+2 \,{\mathrm e}^{2 t} \\ x_{2}^{\prime }=3 x_{1}-2 x_{2}-3 x_{3} \\ x_{3}^{\prime }=-x_{1}+x_{2}+2 x_{3} \end {array}\right ] \]

system_of_ODEs

0.563

4587

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=2 x_{1}-x_{3}+24 t \\ x_{2}^{\prime }=x_{1}-x_{2} \\ x_{3}^{\prime }=3 x_{1}-x_{2}-x_{3} \end {array}\right ] \]

system_of_ODEs

0.565

4588

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

0.465

4589

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.612

4590

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.458

4591

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[_Gegenbauer]

0.552

4592

\[ {}y^{\prime \prime }-2 x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.458

4593

\[ {}y^{\prime \prime }-2 x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.566

4594

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (4 x -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.685

4595

\[ {}y^{\prime \prime }+\left (\cos \left (x \right )+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.654

4596

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.839

4597

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.613

4598

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

[_Laguerre]

0.921

4599

\[ {}x^{2} y^{\prime \prime }+\left (-2 x^{2}+x \right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.783

4600

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.265