2.3.23 first order ode reduced riccati

Table 2.441: first order ode reduced riccati

#

ODE

CAS classification

Solved?

40

\[ {}y^{\prime } = x +\frac {y^{2}}{2} \]
i.c.

[[_Riccati, _special]]

527

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

528

\[ {}y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

676

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

2349

\[ {}y^{\prime } = t +y^{2} \]
i.c.

[[_Riccati, _special]]

2359

\[ {}y^{\prime } = t^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

2524

\[ {}y^{\prime } = t +y^{2} \]
i.c.

[[_Riccati, _special]]

2534

\[ {}y^{\prime } = t^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

4647

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

4663

\[ {}y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

4666

\[ {}y^{\prime } = a \,x^{2}+b y^{2} \]

[[_Riccati, _special]]

4771

\[ {}y^{\prime } x +a +x y^{2} = 0 \]

[_rational, [_Riccati, _special]]

4866

\[ {}x^{2} y^{\prime } = a +b \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

4970

\[ {}x^{4} y^{\prime }+a^{2}+x^{4} y^{2} = 0 \]

[_rational, [_Riccati, _special]]

4997

\[ {}x^{{3}/{2}} y^{\prime } = a +b \,x^{{3}/{2}} y^{2} \]

[_rational, [_Riccati, _special]]

6075

\[ {}y^{\prime }+y^{2} = \frac {a^{2}}{x^{4}} \]

[_rational, _Riccati]

6993

\[ {}y^{\prime } = x^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

7014

\[ {}y^{\prime } = x^{2}-y^{2} \]
i.c.

[_Riccati]

7015

\[ {}y^{\prime } = x^{2}-y^{2} \]
i.c.

[_Riccati]

7017

\[ {}y^{\prime } = x^{2}-y^{2} \]
i.c.

[_Riccati]

7047

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

8213

\[ {}y^{\prime } = -x +y^{2} \]
i.c.

[[_Riccati, _special]]

8793

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

8995

\[ {}y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

9003

\[ {}c y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

9004

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r} \]

[[_Riccati, _special]]

9164

\[ {}y^{\prime } = x -y^{2} \]

[[_Riccati, _special]]

10028

\[ {}y^{\prime }+y^{2}+a \,x^{m} = 0 \]

[[_Riccati, _special]]

10038

\[ {}y^{\prime }+a y^{2}-b \,x^{\nu } = 0 \]

[[_Riccati, _special]]

10114

\[ {}y^{\prime } x +a +x y^{2} = 0 \]

[_rational, [_Riccati, _special]]

10156

\[ {}x^{2} \left (y^{\prime }+a y^{2}\right )-b = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

10194

\[ {}x^{4} \left (y^{\prime }+y^{2}\right )+a = 0 \]

[_rational, [_Riccati, _special]]

12010

\[ {}y^{\prime } = a y^{2}+b \,x^{n} \]

[[_Riccati, _special]]

12019

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

12024

\[ {}x^{4} y^{\prime } = -x^{4} y^{2}-a^{2} \]

[_rational, [_Riccati, _special]]

13035

\[ {}x^{\prime } = t^{2}+x^{2} \]

[[_Riccati, _special]]

13077

\[ {}x^{\prime } = t -x^{2} \]

[[_Riccati, _special]]

13869

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

13871

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

13875

\[ {}y^{\prime } = x -y^{2} \]
i.c.

[[_Riccati, _special]]

14288

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

14359

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

14360

\[ {}y^{\prime } = y^{2}-x^{2} \]

[_Riccati]

14666

\[ {}y^{\prime } = t -y^{2} \]
i.c.

[[_Riccati, _special]]

14667

\[ {}y^{\prime } = y^{2}-4 t \]
i.c.

[[_Riccati, _special]]

15028

\[ {}y^{\prime }-y^{2} = x \]

[[_Riccati, _special]]

15861

\[ {}y^{\prime }+t^{2} = y^{2} \]
i.c.

[_Riccati]

16172

\[ {}y^{\prime } = -x +y^{2} \]
i.c.

[[_Riccati, _special]]

16664

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

16684

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

16698

\[ {}y^{\prime } = x^{2}-y^{2} \]
i.c.

[_Riccati]

16699

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

17915

\[ {}y^{\prime } = \frac {y^{2}}{3}+\frac {2}{3 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

17918

\[ {}y^{\prime } = y^{2}+\frac {1}{x^{4}} \]

[_rational, [_Riccati, _special]]

17924

\[ {}y^{\prime } = y^{2}-x^{2} \]

[_Riccati]